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EXECUTIVE SUMMARY 
D4.1 presents the progress made within WP4 towards the realization of human-robot 
interfaces, specialized end-effectors, control and planning methodologies and overall 
software and control architecture for the robotic system under development in 
MAGICIAN. The report introduces the advancements for the above topics during the first 
year of the project providing details on the development of dedicated wearable tactile 
devices,  the overall control framework, which leverages the XBot2 middleware, 
presenting the current status of the motion control and task planning and scheduling 
algorithms that are considered to enable the motion and interaction performance 
needed as well to permit the robotic platform to prioritize the tasks to be executed 
related to defect detection and reworking. The presented algorithmic and technological 
tools will continue evolve in the following period of the project as the robotic system 
develops and the first experimental trials are carried out.   
The objective of this deliverable is to present and provide details of the advancement 
made in the development of the first version of the technological and algorithmic tools 
considered within WP4 for addressing the MAGICIAN platform requirements and 
challenges in terms of human-robot interfaces, end-effector tools, software, control and 
planning components and their overall integration within the MAGICIAN software and 
control framework.  
The main achievements and findings associated with the work progress performed in 
WP4 and reported in D4.1 includes the followings:   

• Tactile perception modules have been developed, including a wearable tactile 
device and a handheld tactile device, each designed to account for different user 
needs and applications.  The devices permit to carry out scanning actions 
resembling the tactile exploration typically performed during surface 
inspections.   

• The first version of control methodologies for providing adaptive robot 
interactions have been realized and tested in simulation, including the realization 
of motion and impedance regulation tools for both human-robot  and 
environment-robot interaction.  
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• The XBot-based framework has been explored as an overall soft and control 
integration framework and its first integration with the commercial robotic 
system has been performed.      

• Planning and scheduling algorithms and tools have been explored and developed 
to optimize the robot’s defect detection and reworking tasks.   

• Motion generation tools have been realized to allows to generate and perform 
complex motion tasks by leveraging a simple, auto-generated ROS-based 
interface.  

 

DEVIATIONS 
No deviations to report.  
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1 INTRODUCTION  
This deliverable presents the progress made during the first year of the MAGICIAN 
project, focusing on the development of a robotic platform and its interfaces designed 
for defect detection and reworking processes. The interfaces serve primarily to acquire 
tactile and motion data, which will then be replicated by the robotic platform to perform 
autonomous defect sensing and cleaning operations. Key challenges addressed include 
the design of intuitive interfaces for precise defect detection and the implementation of 
impedance and force control methods for enhanced safety and adaptability. 
Additionally, the deliverable outlines the development of advanced planning and 
scheduling algorithms that optimize task sequencing for defect detection and 
reworking, ensuring efficient and collision-free operations in dynamic environments. 

1.1 PURPOSE AND SCOPE 

The purpose of this deliverable is to provide an overview, outlining the progress made in 
the development of human-robot interfaces, end-effectors, and control methodologies 
for the robotic platform, which constitute the core technological components of the 
MAGICIAN project for autonomous defect detection and reworking processes. These 
systems are designed to enhance the robot's ability to autonomously perform defect 
sensing, cleaning, and reworking tasks in industrial environments. This document 
outlines the design and implementation of these technologies during the first year of 
the MAGICIAN project. 
The human-robot interfaces developed include a wearable and a handheld tactile 
device. The wearable device, equipped with sensors on the palm, allows for intuitive 
surface inspections, using interchangeable probe tips to simulate different tactile 
interactions for detecting defects and imperfections on the car body. The handheld 
device, featuring a scallop-shaped probe, provides flexibility by covering larger surface 
areas while detecting smaller defects. Both devices have interchangeable end-effectors 
and tactile sensors, making them adaptable to different use cases and complementing 
the camera system by enhancing detection accuracy, especially in challenging areas 
such as edges or larger surfaces. 
In terms of control methodologies, the deliverable highlights the development of 
impedance and force control strategies implemented via the XBot2 middleware. These 
strategies allow the robot to adapt to varying external forces, ensuring safety and 
precision in dynamic environments. The impedance control is further enhanced by 
introducing a gravity-compensated teaching mode, which enables intuitive human 
interaction for pose or trajectory teaching, with the robot remaining compliant with the 
external forces while compensating for gravity. 
This deliverable also discusses the development of task planning and scheduling 
algorithms that allow the robotic platform to prioritize and execute defect detection and 
reworking tasks efficiently. The system optimizes the sequence of operations based on 
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defect severity, likelihood, and time constraints, while motion planning ensures collision-
free navigation, accounting for environmental factors such as human presence. The 
deliverable highlights roadmap-based scheduling techniques, dynamic motion 
primitives, and trajectory adjustments, laying the groundwork for a fully autonomous 
robotic system that enhances efficiency and safety in industrial operations. 
This document sets the foundation for subsequent iterations and refinements, laying the 
groundwork for a fully autonomous robotic system capable of defect detection, 
reworking, and cleaning operations in industrial processes. 

1.2 CONTRIBUTION TO PROJECT OBJECTIVES 

The progress reported in this deliverable directly contributes to the broader goals of the 
MAGICIAN project, which encompass scientific, technological, and demonstration 
objectives. Specifically, the objectives that this work supports are: 

Scientific and Technological Objectives 

• O1: A robotic perception module integrating visual and tactile sensors for 
defect analysis and classification. 

• O2: A robotic cleaning module with a specialized end-effector for defect 
reworking. 

• O3: A software robotic platform integrating services for perception and 
cleaning modules. 

• O4: A closed-loop defect detection and avoidance system for robotic and 
welding processes. 

• O5: Development of two TRL 7 integrated prototypes for defect analysis and 
reworking. 

Social Sciences and Humanities (SSH) Objectives 

• O6: A human-centred approach to human-robot collaboration, promoting 
usability, safety, and trustworthiness. 

Demonstration Objectives 

• O7: Demonstration of the prototypes in operational scenarios. 

• O8: Expansion of MAGICIAN’s scope and applicability via Financial Support to 
Third Parties (FSTP). 

The development of human-robot interfaces and control methodologies detailed in this 
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deliverable is crucial to the MAGICIAN platform capabilities. These advancements enable 
the platform to perform defect detection, cleaning, and reworking operations 
autonomously. Implementing impedance and force control systems enhances safety 
and adaptability during complex industrial processes, while the planning and 
scheduling algorithms ensure optimal task execution. These contributions align with the 
overall project goals of delivering a highly automated, adaptable, and efficient system 
for defect handling and reworking, ultimately advancing the automation of industrial 
processes and demonstrating the effectiveness of the MAGICIAN platform in operational 
environments. 

1.3 RELATION TO OTHER WORK PACKAGES 

As the work done in this WP supports all the objectives of the MAGICIAN project, as 
detailed in the previous section, the relation is quite tight with all the other WPs. In 
particular, WP4 is entirely devoted to the definition and implementation of the robotic 
platform and its interfaces, developing the control, planning and scheduling algorithms 
for both the CR and the SR. A synthetic list of the most important relations is offered 
next. 

• WP2 – Use case definition and platform design:  The robotic solutions developed 
in the WP are primarily defined by the specific requirements of the automotive 
use case, which is the MAGICIAN main focus. This use case imposes unique 
challenges related to the system in terms of end-effector design, reworking 
effectiveness, safety, integration with the perception module, and time and cost 
constraints. These challenges, being addressed in the first developments of the 
WP4 work, are briefly outlined in this report. 

• WP3 – Data acquisition and skills learning: WP4 covers the main technological 
developments on the MAGICIAN CR and SR robots, hence its activities are closely 
interconnected with the work carried out in WP3. Planning and scheduling rely 
on defect analysis and predictions of human operator movements, which is 
covered in T3.1. Motion control and active sensing directly use data processed 
through the perception pipeline of T3.2. The motion strategies and the robot 
control have an intimate relation with the way the operators carry out their job, 
which is observed and understood in T3.3. However, the robotic platform 
capabilities will also reshape the work of WP3, since the robotic arm motion 
capabilities have a direct impact on the available perception strategies and on 
their effectiveness in due course. 

• WP5 - Integration and performance analysis: The components developed in 
WP4 and outlined in this document will be integrated into the final platform (T5.1) 
and included in the demonstrator (T5.2), thus contributing to the project's KPIs. 

• WP6 – Cascade funding management: As the robotic platform will be utilized, 
with the necessary adaptations, in subprojects from the cascade funding scheme, 
the WP findings will be essential in providing support and technical assistance 
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(T6.4). 

1.4 STRUCTURE OF THE DOCUMENT 

This document is structured into eight main sections, detailing the development and 
progress of the robotic platform, human-robot interfaces, motion control, and planning 
components as part of the MAGICIAN project. Each section addresses key aspects of the 
system's design, implementation, and integration, with a final section dedicated to 
future development and planning. 
Chapter 2 focuses on the development of human-robot interfaces, specifically the tactile 
perception modules. It reviews the state of the art in human-robot interaction, defines 
the objectives and requirements for the interface, and presents the methodologies 
employed. The chapter also highlights the integration of the tactile modules into the 
robotic platform, along with preliminary results and key challenges encountered during 
development. 
Chapter 3 covers the design and implementation of control methodologies, including 
impedance and motion control for safe and adaptive robot interactions. It describes the 
state of the art in control technologies and introduces the XBot-based control 
framework used in the project. Additionally, it discusses the gravity-compensated 
teaching/interaction mode developed to enhance user-robot collaboration. 
Chapter 4 outlines the planning and scheduling algorithms developed to optimize the 
robot’s defect detection and reworking tasks. It details the work scheduling component, 
motion planning module, and the integration of these elements to ensure efficient, 
collision-free task execution. Chapter 5, instead, focuses on motion generation and active 
sensing; this chapter discusses the development of motion generation modules, 
highlighting task-driven motion and impedance modulation principles. 
Chapter 6 summarizes the key outcomes and achievements of the first year of 
development in WP4. It discusses the current state of the robotic platform and its 
components, as well as challenges and areas for improvement identified during testing. 
Lastly, Chapter 7 outlines the future direction of WP4, including further development 
and refinement of the robotic platform, interfaces, and control methodologies. It 
highlights the next steps for integration and testing, with a focus on achieving fully 
autonomous defect detection and reworking operations.  
A comprehensive list of references used throughout the document is reported in 
Chapter 8, which covers the scientific and technological foundations that support the 
research and development in WP4. 

1.5 SYSTEM OVERVIEW 

The robotic system developed within the MAGICIAN project is built around a 
collaborative robotic platform, specifically the Doosan H2515 cobot. This robot is 
designed for tasks requiring precision and safety, offering advanced defect detection 
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and reworking capabilities. The Doosan H2515 features six-axis control, an extended 
reach of 1500 mm, a payload capacity of 25 kg, and a repeatability of 0.1 mm, making it 
ideal for handling complex tasks in industrial environments. The cobot's advanced safety 
features, including six load cells for real-time force sensing, ensure minimal contact 
forces and high precision during operation, enhancing both safety and performance in 
collaborative settings. 
The system also integrates tactile sensors into wearable and handheld devices, which 
allow the robot to acquire detailed surface information and autonomously replicate 
human-like movements during defect detection and cleaning operations. 

1.5.1 REQUIREMENTS AND SPECIFICATIONS 

The system requirements for the robotic platform emphasize safety, precision, 
adaptability, and integration. The Doosan H2515 robot was selected for its robust 
capabilities in handling industrial tasks, including defect detection and reworking. Key 
specifications include: 

• Payload capacity: 25 kg, allowing the robot to handle a variety of tools and 
parts. 

• Reach: 1500 mm, enabling the robot to cover large surface areas. 
• Repeatability: 0.1 mm, ensuring high precision in tasks such as grinding and 

defect cleaning. 
• Safety features: Six-axis force sensors ensuring a contact force of 0.2 N, 

guaranteeing high sensitivity in defect detection. 
• Communication protocols: Ethernet (TCP/IP), ModBUS, and Profinet IO, 

providing flexible connectivity options. 
• Programming: The cobot supports intuitive block-based programming and 

pre-configured routines, simplifying the setup for different tasks. Additionally, 
the robot’s flange is equipped with connectors (6+6 I/O) for secure and efficient 
tool integration. 

• Compliance: The system adheres to international safety standards, including 
EN ISO 13849-1 and EN ISO 10218-1. 

These specifications ensure the platform can be easily integrated with other hardware 
and systems developed in the project while maintaining compliance with industry 
standards. 

2 HUMAN-ROBOT INTERFACE 

2.1 INTRODUCTION 

The Human-Robot Interface addresses the critical task of defect detection and 
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reworking in car-body manufacturing through advanced robotics and sensing 
technologies. A key component of this effort is the acquisition of a comprehensive tactile 
dataset, crucial for enhancing the accuracy of defect classification and reworking 
processes. To achieve this, we developed different haptic interfaces, one wearable and 
one hand-held, to realistically acquire the interaction forces and accelerations that 
workers experience during the inspection phase. The interfaces have been designed to 
ensure they do not impede the operator’s ability to detect and classify defects. Despite 
utilizing basic sensors, these interfaces have demonstrated promising results in defect 
detection and identification, enabling the collection of detailed data that accurately 
represents the forces involved. In addition to the haptic interfaces, the grinder tool used 
for defect reworking is equipped with force/torque sensors. This setup supports a 
learning-by-demonstration approach, allowing the cleaning robot to learn the proper 
reworking procedures from human operators. Both the defect detection and grinding 
tools will feature fiducial markers for precise trajectory tracking. After deploying the 
system, a haptic ring will provide discrete feedback to operators, informing them about 
the outcomes of post-reworking inspections and verifications. 
This report details the development and evaluation of the tactile interface and its 
integration with the robotic system, aiming to enhance the overall efficacy of defect 
detection and reworking operations in the MAGICIAN project. 

2.2 STATE OF THE ART 

The tactile interfaces developed in MAGICIAN leverage cutting-edge wearable haptic 
technologies. Drawing on IIT’s expertise, we developed highly accurate and responsive 
haptic solutions. To capture the detailed nature of defects, we acquired both static, force-
based signals using force sensors [Chinello2012, Pacchierotti2017] and dynamic, 
acceleration-based signals [Kappassov2015]. Our approach aims to surpass current state-
of-art capabilities by transferring human defect-detection skills to a robotic platform. 
This involves developing active sensing [Seminara2019, Pape2012], where the robot's 
motion is guided by acquired data to seek further information on defect presence and 
characteristics. The primary goal is to endow the robot with closed-loop sensorimotor 
abilities through multi-modal Learning from Demonstration, allowing us to harness 
human expertise effectively. Since vision-based defect detection has its limitations, the 
sense of touch remains crucial. To transfer human expertise to robots, we combine 
tracked hand motions with tactile data, capturing the forces and acceleration applied 
during defect inspection. Our haptic technology relies on state-of-the-art solutions 
[Prattichizzo2013], designed to realistically render the interaction forces experienced 
during inspection. 

2.3 OBJECTIVES AND REQUIREMENTS 

The aim is to develop a tactile sensing interface that is both user-friendly for operators 
and easily adaptable for integration into the robotic platform. Particular attention is 
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being paid to design a system that seamlessly fits into the operator's normal workflow, 
avoiding any interference or added complexity during defect detection tasks. At the 
same time, the interface must be modular, allowing for easy extraction and transfer to 
the robotic platform. This modularity is crucial for enabling the robot to "learn" from the 
operator's expertise, by replicating the same tactile signals and feedback mechanisms 
used by the operator to detect and refine surface defects. The challenge lies in ensuring 
that the interface captures the nuanced forces and vibrations the operator relies on, 
while remaining flexible enough to be applied across different environments and robotic 
systems. Achieving this will help streamline the transition between human and robotic 
inspection, enhancing both the accuracy and efficiency of the defect detection and 
reworking process. 

2.4 TACTILE PERCEPTION MODULE 

The tactile sensors proposed in D3.1 have been integrated into two distinct types of 
tactile devices: a wearable tactile device and a handheld tactile device, each designed to 
account for different user needs and applications.  
 The wearable tactile device has been designed to be worn on the user’s hand, with the 
sensors strategically placed on the palm. This configuration allows the user to maintain 
natural scanning movements, closely mimicking the tactile exploration typically 
performed during surface inspections. The device is equipped with a probe that features 
interchangeable pulps, each with different textures, Figure 1. This variety in texture is 
intended to enhance the detection of surface defects by simulating different tactile 
sensations, providing a more comprehensive and nuanced analysis. Each pulp, with a 
radius of 8 mm, is designed to fit seamlessly with the force sensor's dimensions. These 
pulps are 3D printed using PLA, a material selected for its strength and durability. This 
ensures that the tips can withstand repeated use during surface scanning without 
causing scratches or damage. Additionally, the choice of PLA helps maintain the 
integrity of the force and vibration signals, allowing them to be transmitted clearly to the 
tactile sensors without interference or signal loss. 

  
Figure 1: The wearable interface is equipped with a PLA tip, which can be 3D printed with varying texture resolutions 
(0.3, 0.2, 0.1, and 0.05 mm). These different resolutions are designed to enhance the magnification of tactile signals, 

allowing for more precise detection of the defect’s features. 
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The second device has been designed as a handheld tool, enabling the operator to 
perform scanning movements that are slightly modified compared to freehand 
exploration, while still allowing for freedom of movement, Figure 2. This handheld 
approach allows for greater freedom and flexibility in the design of the probe. For 
instance, in this design, a scallop-shaped probe was chosen. This shape increases the 
surface area that can be scanned in a single acquisition, while simultaneously 
miniaturizing the contact point with the surface. Such a design is particularly 
advantageous for detecting smaller, more subtle defects, thus enhancing the overall 
effectiveness of the tactile scanning process.  
Although both designs utilize the same tactile sensor configurations, with 
interchangeable end effectors between the two devices, they are suitable options to 
optimize different requirements of the MAGICIAN project, including integration with the 
camera system described in D3.1. The different end effectors shown in 

 
Figure 3 are designed to complement the camera system, particularly in situations 
where the camera encounters challenges in defect classification, such as uncertain 
results or areas of car parts that are difficult to access. 
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Figure 2: The handheld interface equipped with a scallop component. The scallop is 3D printed using a combination of 
ABS and TPU materials to ensure effective defect detection while maintaining optimal contact between the surface and 
the scallop. Different patterns for the teeth arrangement can be employed to customize the detection process, allowing 

the interface to accurately identify various types of defects. 

 
For instance, the probe tips with varied textures are particularly useful for detecting 
defects that are hidden from the camera, such as those located on the edges of car parts. 
The precise, localized scanning capability of these tips enhances the classification 
process in such scenarios. Conversely, the scallop-shaped end effectors are 
advantageous when the camera system identifies potential defects on larger surface 
areas but with high uncertainty. In these cases, the scallop design help to maximizes the 
scanned area, improving operational efficiency and ensuring more accurate defect 
detection. 

2.5 INTEGRATION IN THE HUMAN-ROBOT INTERFACE 

The tactile perception module has been designed with an emphasis on modularity, 
ensuring seamless integration across the various interfaces required by the MAGICIAN 
project. This modularity allows the module to be easily adapted for different applications, 
making it versatile enough to meet the diverse needs of defect detection in both 
human-operated and robotic systems. At the core of the module there is the tactile 
perception module, which has been engineered to be compatible with a wide range of 
end effectors. The flexible design of the perception module ensures that it can be 
mounted on multiple interfaces, whether the latter are wearable devices for a human 
operator or robotic platforms for automated inspection tasks. Furthermore, the tactile 
module is designed to accomplish the specific requirements of each scenario, such as 
the precision needed for human-driven inspections or the robustness necessary for 
robotic operations. This adaptability makes it an essential component in achieving the 
project's goal of transferring human expertise in defect detection to robotic systems, 
allowing the robot to replicate the tactile feedback that humans rely on. 
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Figure 3: The tactile system is composed of various modules, each serving a specific function within the overall setup. 

The tactile perception module is designed to be versatile, allowing it to be equipped with different end effectors tailored 
for surface scanning. This module can be integrated into various interfaces, which are specifically designed either for 

use by human operators or for mounting on robotic platforms. 

2.6 CHALLENGES AND LIMITATIONS 

The main challenges and limitations of the tactile perception module come from the 
same constraints associated with wearable devices. Despite being designed with a 
strong emphasis on wearability and comfort, the human interfaces do not fully 
guarantee that operators can maintain their usual range of motion or workflow during 
defect detection tasks. This is particularly important, as the tactile sensors need to 
facilitate natural scanning movements without hindering the operators' dexterity. 
Further research is required to better understand operator preferences between two key 
options: a wearable solution which allows operators to perform scanning movements 
like their traditional workflow but prevents direct hand contact with the car parts, and a 
hand-held device that is potentially more comfortable but introduces changes to the 
scanning procedure (but with the same limitation related to the avoided hand contact). 
Each approach offers advantages and challenges, and it remains to be seen which one 
will be favoured by operators in terms of ease of use and efficiency. 
In addition to addressing these human interface challenges, more work needs to be 
done to ensure proper integration between the tactile perception module and the 
robotic platform. Establishing a seamless interconnection is critical for achieving the 
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project's goal of transferring human expertise to the robot, particularly in defect 
detection and reworking. The tactile data collected by the human-operated interface 
must be accurately translated into actionable information for the robot, enabling it to 
replicate the same scanning techniques and defect identification strategies used by 
skilled workers. 
 

3 MOTION AND INTERACTION CONTROL  

3.1 INTRODUCTION 

A robot control system is nowadays a distributed entity, which can be divided into two 
components: (i) one that runs closer to the hardware and therefore benefits from the 
least possible latency in accessing the underlying field bus, and (ii) a remote portion that 
consists of several processes running on multiple machines, or even cloud-based 
systems. The focus of this report is to propose a solution for the implementation of the 
first type of software, which we refer to as the real-time middleware XBot2 
[Laurenzi2023]. 
In this report, by real-time middleware, we mean the software framework that runs 
closest to the target hardware and allows users to customize its behaviour to suit their 
own needs, typically via a plugin-based architecture. For instance, the firmware inside a 
digital signal processor (DSP) does not fall into this category, as it cannot be used to 
invoke custom control code. 
The proposed infrastructure will expose multiple integration points to enable, in the 
context of MAGICIAN, multiple components to cooperate seamlessly at both the high-
rate real-time layer and the slower, non-real-time (non-RT) planning level. Our main 
goals are the seamless support for mixed hardware topologies consisting of both real-
time and non-real-time devices, a component-based design, as well as a highly modular 
architecture that promotes the reusability of its components. 
Finally, in our view, components running under real-time constraints should have access 
to the same high-level, easy-to-use APIs as their non-real-time counterparts. It is the 
framework's responsibility to provide a real-time-capable toolbox, along with monitoring 
and troubleshooting tools to simplify debugging, even at the real-time layer. 
Real-time performance is usually not a requirement for a general-purpose operating 
system or kernel, which tends to optimize overall system throughput, possibly penalizing 
CPU-bound applications. Limiting ourselves to the open-source Linux ecosystem, 
deterministic time behaviour can be achieved through two different approaches. The 
first approach is to patch the "vanilla" Linux kernel to enable pre-emptive, priority-based 
scheduling. This means that a high-priority thread can ideally execute as soon as it is 
ready (e.g., wakes up from a timed sleep), by immediately halting any lower-priority 
thread that may be running. This is the approach followed by the well-known 
PREEMPT_RT patch (described at https://wiki.linuxfoundation.org/realtime/start). The 

https://wiki.linuxfoundation.org/realtime/start
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second approach is the so-called dual-kernel method, where a companion co-kernel 
intercepts all interrupts and schedules its own processes before the standard Linux 
kernel. This strategy is followed by the notable Xenomai project (described at 
https://source.denx.de/Xenomai/xenomai/-/wikis/Start_Here). From the developer’s 
perspective, the main difference is that a dual-kernel approach comes with its own 
"native" API to interact with the co-kernel, whereas the single-kernel approach requires 
no custom API beyond standard UNIX/POSIX primitives. 
In this section, we present a novel real-time middleware for robotic applications under 
the name of XBot2. Compared to the previous version, XBotCore [Muratore2020], the 
XBot2 framework is characterized by the following features: 

• A fully dynamic hardware abstraction layer (HAL), supporting on-the-fly device 
auto-discovery, along with the ability to generate high-level APIs for a simpler, 
more transparent integration with behaviours, i.e., the user’s custom code. 

• An improved and more flexible, multi-threaded plugin system for the 
implementation of periodic behaviours. 

• A set of operating system service abstractions that serve as building blocks for the 
whole architecture and facilitate portability across different Real-Time Operating 
Systems (RTOSs). Notably, due to a lack of appropriate abstractions, the previous 
version, XBotCore, was limited to supporting only the Xenomai RT development 
framework. 

• A set of user-land facilities allowing internal components to communicate with 
each other in a fully decoupled way. Lock-free synchronous and asynchronous 
paradigms are provided. Leveraging these facilities, components (both at the HAL 
and behaviour levels) can be seamlessly relocated across different execution 
threads. 

• A more robust and flexible dual-process, client-server approach to allow XBot2 to 
communicate with robot hardware (or simulators), as opposed to the previous 
single-process architecture. This layer simplifies XBot2’s support for multiple 
simulators and robotic systems, as demonstrated by our Gazebo, PyBullet, and 
MuJoCo integrations. This approach avoids a single point of failure and provides 
process separation in XBot2. 

In the following section, we present details and design ideas for each of these key 
contributions. We also perform validation experiments on different robotic platforms, 
both real and simulated via various simulation engines. To validate the framework’s real-
time performance, we provide data from experimental sessions involving both a 
Xenomai-based host machine and a Linux/PREEMPT_RT one. 

3.2 STATE OF THE ART 

While other real-time middlewares have been developed by the research and industrial 

https://source.denx.de/Xenomai/xenomai/-/wikis/Start_Here
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communities, none has established itself as a de facto standard, unlike the Robot 
Operating System (ROS), which is by far the most common non-RT integration 
framework for robotics. The OROCOS project, for instance, has been used in several 
projects but is now rarely maintained or upgraded, making it difficult for third-party 
organizations to adopt. Other examples include OpenRTM and PODO. Notably, the 
successor to ROS, the ROS2 framework, plans to add real-time support as a feature, 
thanks to its integration with the Data Distribution Service (DDS) as the transport layer, 
along with careful design. However, RT support is still in its early phases. Other works 
have adopted a mixed RT/non-RT architecture, where ROS coexists with RT-capable 
components, similar to how XBot2 integrates with ROS. 
This work builds on IIT’s experience in developing the precursor to XBot2, namely the 
XBotCore framework. While a detailed description of XBotCore is beyond the scope of 
this report, we will briefly mention its main limitations, which we aim to overcome with 
XBot2. XBotCore provides a framework to execute real-time control code within a single 
process running on a Xenomai-based host machine while also integrating with the ROS 
framework (and others). It relies on a static threading model consisting of a real-time 
thread and a "companion" non-RT thread. The real-time thread executes a basic 
hardware abstraction layer (HAL) and schedules user modules (known as plugins), while 
the non-RT thread provides a ROS-based API for external components. However, due to 
a lack of suitable abstractions, plugins cannot rely on a unified, clear way to configure 
themselves or communicate with each other, limiting effective code reuse and 
component decoupling. Therefore, we set new base requirements to overcome these 
limitations, as follows: 

1. Seamless (i.e., completely managed by the framework) multi-thread support; a 
component should be relocatable to a different thread without needing to adapt 
its code. 

2. Ability to develop decoupled components through appropriate configuration and 
communication primitives. 

3. Ability to adapt to any host OS or RTOS, through an appropriate operating system 
abstraction layer. 

 

3.3 OBJECTIVES AND REQUIREMENTS 

This section presents a novel real-time middleware for robotic applications under the 
name of XBot2. Compared to our previous iteration, XBotCore, the XBot2 framework is 
characterized by the following requirements: 
 

• A fully dynamic hardware abstraction layer (HAL), with support for on-the-fly 
device auto-discovery, as well as the ability to generate high-level APIs for simpler 
and more transparent integration with behaviours, i.e., the user's custom code. 
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• An improved and more flexible, multi-threaded plugin system for the 
implementation of periodic behaviours. 

• A set of operating system service abstractions that serve as building blocks for the 
whole architecture and facilitate its portability across different Real-Time 
Operating Systems (RTOSs). In this regard, note that—due to the lack of 
appropriate abstractions—the previous version of the architecture, XBotCore, had 
the strong limitation of supporting only the Xenomai RT development framework. 

• A set of user-land facilities allowing internal components to communicate with 
each other in a fully decoupled way; lock-free synchronous and asynchronous 
paradigms are provided. Leveraging these facilities, it is possible to realize 
components (both at the HAL and behaviour level) that can be seamlessly 
relocated across different execution threads. 

• A more robust and flexible dual-process, client-server approach that allows XBot2 
to communicate with the robot hardware (or simulator), as opposed to the 
previous single-process architecture. Thanks to this layer, it is simple for XBot2 to 
support multiple simulators and robotic systems (either custom or commercial), 
as exemplified by our Gazebo, PyBullet, and MuJoCo integrations. This avoids a 
single point of failure and provides process separation for XBot2. 

 

3.4 OVERALL CONTROL FRAMEWORK BASED ON XBOT 

The MAGICIAN control framework is depicted in Figure 4. Starting from the lowest level, 
we are going to have a layer to control both the Doosan H2515 cobot and the MAGICIAN 
End-Effector: we will use respectively the Real-Time DRFL API (Doosan Robotics 
Framework Library, https://github.com/doosan-robotics/API-DRFL) and a custom 
implementation of the SOEM library (Simple Open EtherCAT Master Library, 
https://openethercatsociety.github.io/doc/soem/). 
Exploiting the XBot2 software architecture, we are capable to control the full MAGICIAN 
robot system in a transparent way either in simulation or in the real hardware: we will 
highlight in the next subsections the features of the XBot2 that makes this possible. 
 

https://github.com/doosan-robotics/API-DRFL
https://openethercatsociety.github.io/doc/soem/
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Figure 4: Overview of the MAGICIAN framework. 

 

3.4.1 HARDWARE ABSTRACTION LAYER 

The role of a hardware abstraction layer is twofold. First, to grant access - both in 
transmission and reception - to some external device under suitable performance 
requirements that depend on the specific device and use case. Whenever this is made 
possible by the hardware interface, it should also perform automatic discovery of 
connected device instances to reduce the configuration burden to a minimum for the 
user. In the context of XBot2, we use the word 'hardware' in a relaxed sense, i.e. this could 
mean either (i) direct access to the device's fieldbus (such as EtherCAT, Profibus, CAN, 
etc.), or (ii) usage of a network interface (such as a UDP socket) connecting to the robot's 
control box (as is often the case when dealing with commercial robots for research) or 
any other - direct or indirect - way to reach the hardware or simulator. 
Secondly, it must present the user of the framework with a programming interface that 
abstracts away unnecessary details, therefore promoting the reuse of software 
components whenever the hardware changes in a compatible way. For instance, the 
user (or client) of the HAL system must not be required to modify his/her code if e.g., (i) 
passing from simulation to experiments, (ii) changing a device vendor, or (iii) changing 
the robot vendor entirely. 
Finally, the HAL system must comply with our general requirements of Section 1.2, i.e. 
the HAL should be relocatable to any execution thread in a transparent way, as well as 
the HAL clients. To address this condition, XBot2's HAL system resorts to a client-server 
approach, where two sides are defined: 

• The DeviceDriver side is a unique per-device component that connects and 
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communicates with the hardware. This acts as the server side of a device's HAL. 

• The DeviceClient side, i.e. the component in charge to provide the proper API to 
the user. Multiple instances of the client side usually exist in the system. 

The XBot2 framework leaves maximum flexibility to the developer in choosing a way to 
connect and synchronize the driver and client components. On the other hand, it also 
provides suitable base classes that provide ready-to-use mechanisms that rely on a set 
of primitives, therefore ensuring satisfaction of our generic requisites in a standardized 
way. The implemented class hierarchy is structured as follows, with the relevant UML 
diagram being shown in Figure 5. 
 

 
Figure 5: Xbot2 implemented class hierarchy and related UML diagram. 

From the user perspective, device drivers and clients are automatically loaded by XBot2's 
HalManager during the framework initialization phase and based on a configuration file. 
Available device clients can be inspected and used from a control module via the 
RobotInterface object, as it will be explained in the next section. 
As a final remark, device drivers and clients are loaded inside so-called containers, which 
group together all devices of the same kind (e.g., all joints of a given type). Containers 
can be employed to carry out operations that involve all devices at once, depending on 
the characteristics of the hardware interface.  
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3.4.2 IMPLEMENTING BEHAVIORS 

Ultimately, the goal of XBot2 is to foster a simple and dynamic use of devices from control 
(or monitoring) modules to realize some desired behaviour. The implementation thereof 
happens inside a component called ControlPlugin, where the word ``plugin'' refers to 
the ability to load the module itself inside the system at runtime dynamically. 
The XBot2 ControlPlugin is made of three components, i.e.: 

• A finite state machine describing the module's lifecycle; 

• A set of facilities for named resource resolution; 
• A RobotInterface object which grants access to the HAL's client side; 

 

 
Figure 6: States and permitted transitions of the ControlPlugin lifecycle. 

The ControlPlugin lifecycle describes all possible states for the component, and for each 
state enforces a set of allowed transitions, as depicted in the figure below. The 
implementer of a plugin can generate transitions and react to them as well, via callbacks. 
For instance, a periodic task is implemented by assigning a callback to the Run state, 
which is called upon every clock tick, according to the required period. The TaskManager 
component is ultimately responsible for (i) the plugin execution according to the defined 
lifecycle, (ii) the broadcast of information about the running modules state as well as 
some relevant statistics (such as CPU time), and (iii) for providing a service that allows 
other components of the system to emit events to change the plugin state (e.g., to start 
a plugin). 
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XBot2's RobotInterface has been introduced as a part of our previous iteration XBotCore, 
and it has been upgraded to be the main access point for the user to the HAL's client 
side. The RobotInterface component is part of the more general XBotInterface package, 
which comprises (i) an XBotInterface base class, and two derived classes, namely (ii) the 
ModelInterface, and (iii) the RobotInterface. Based on the observation that the generic 
state of a multi-limbed robot, which is often made of over thirty degrees of freedom, is a 
difficult quantity for humans to interpret and manipulate, the XBotInterface class 
leverages the URDF and SRDF in order to present an interface to the robot state (e.g. 
motor positions, velocities, torques, gains, and others) in a chain-by-chain fashion. 
Indeed, each chain is usually of a manageable length and is characterized by a natural 
ordering, i.e. from the base link to the tip link.  
The ModelInterface class inherits such a chain-wise structure and adds on top a suite of 
methods to retrieve several kinematic and dynamic quantities corresponding to the 
robot state as described by the base class. A concrete implementation based on the 
RBDL library is provided with the framework. 
The RobotInterface class enables the connection of the inherited robot state to a robot 
via a sense/mode pair of virtual methods. Two concrete implementations are provided, 
namely (i) a ROS-based client library called RobotInterfaceRos; it connects to XBot2's 
ROS API via suitable ROS topics, services, and actions and (ii) the XBot2's HAL client 
library, called RobotInterfaceRt, will use the HAL client side as described in the section 
above instead. 
Thanks to this abstraction layer, control code that runs inside an XBot2 ControlPlugin is 
moveable to a remote ROS node with minimal effort. Clearly, any real-time guarantee 
will be lost in such a case. 
For each ControlPlugin loaded into the system, an instance of RobotInterface is created. 
On construction, it will dynamically load the client side of all defined HAL devices. The 
user can then examine the HAL system via the getDevices template method, which will 
return all device clients conforming to a given virtual interface. A generic control module 
can be written by (i) using the most generic interface that allows the carrying out of the 
task at hand and (ii) running optional code that requires a more specific interface only if 
that interface is available on the target hardware. 

3.5 MOTION/IMPEDANCE CONTROL 

Implemented through the XBot middleware, various modules have been designed to 
control the robot in different tasks and environments. One such module is a motion 
generation system based on impedance control. The importance of such control scheme 
is supported by various demonstrations from literature, beginning with the work of 
[Hogan1985]. Given that modern robots are expected to operate in dynamic and evolving 
environments, such the ones considered in the project, it is of fundamental importance 
to account for the interaction forces experienced by the manipulator. These forces are 
not only inevitable during manipulating objects or interacting with the environment, but 
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they are also essential to consider for ensuring safety in the case of unexpected collisions. 
This is crucial for both the protection of the robot, and, especially, for the safety of 
humans working in proximity of the robot and/or collaborating with it. These 
considerations form the basis for developing human-centred technologies, which are 
the core mission of this project. 
The impedance control can be implemented at different levels, i.e. at the 
task/operational space and at the joint space. While the first is discussed later in the 
Section 5.5, the latter is based on the following formula: 
𝜏  =  𝐾(𝑞! − 𝑞)  +  𝐷 (𝑞!̇ − �̇�)  +  𝑀(𝑞)(�̈�!)  +  𝐶(𝑞,  �̇�)�̇�  +  𝑔(𝑞)  + 𝐽"(𝑞)𝑓                              
where 𝐾	is a matrix of stiffness gains, 𝐷	is a matrix of damping gains, 𝑀(𝑞) is the mass 
matrix, 𝐶(𝑞, �̇�)�̇� are Coriolis torques, 𝑔(𝑞) are gravity torques, 𝐽"(𝑞) is the transposed 
Jacobian matrix, and 𝑓	 any kind of other external forces due, for example, to interaction 
with objects or people. By modulating the impedance parameters, it is possible to obtain 
different levels of compliance, according to the needs. As mentioned earlier, this control 
module is implemented using the XBot middleware and can be leveraged in real-time 
control plugins when needed. 

3.5.1 GRAVITY COMPENSATED TEACHING/INTERACTION MODE 

A practical application of the implemented impedance control module is the gravity 
compensated teaching/interaction mode.  By appropriately tuning accordingly the 
gains of the above formula, the robot behaviour can be fully compliant to external forces, 
i.e. forces applied by the human, but still compensating the gravity, hence remaining still 
when no external forces are present. This mode is useful to teach the robot particular 
poses or trajectory, safely and effortlessly by intuitively moving the manipulator in the 
wanted positions [Muratore2023]. 

3.6 CO-DESIGN OF ROBOT-GRINDER INTERFACE 

A crucial aspect of the work is to assess the need for an interface between the end-
effector and the grinder. Such an interface could be fundamental in reducing vibrations 
and better distributing contact forces, thus preventing damage to the robot and 
improving the accuracy of operations. However, designing such as interface is not a 
simple task. For instance, making it too stiff or not stiff enough could negatively affect 
the performance of the entire system. For this reason, we believe that using co-design 
could be our best option to design this interface in the best feasible way. Co-design is 
based on the simultaneous optimization of hardware and control parameters, to achieve 
top performance at a specific task. Therefore, we need to be able to evaluate the 
behaviour of the robot accurately and efficiently for any given combination of hardware 
and control parameters. In this study, we analyse our ability to simulate the behaviour of 
the robot performing a grinding operation, using state-of-the-art numerical integration 
techniques, which would then provide the foundation for our co-design framework.  
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3.6.1 CONTACT FORCE MODELING 

In grinding operations, the end-effector of the robot is subject to various forces. The two 
main forces are:  

• friction forces, generated when the end-effector contacts the surface, 

• vibration forces, resulting from the internal dynamics of the grinder. 
Friction forces emerge when the grinder touches the surface, opposing the motion. 
These forces include the normal force, which acts perpendicularly to the surface, and the 
tangential force, which opposes motion along the plane of contact. At the same time, 
the grinder itself introduces vibrations into the system. These vibrations have different 
amplitudes and frequencies, depending on the type of tool and its operating 
characteristics. In our model, we simplified the forces generated by the grinder by 
representing them as sinusoidal forces along the three Cartesian axes (x, y, z).  
This approach, while being a simplification, effectively captures the effect of vibrations 
on the robot, helping to understand the impact of these forces on overall system 
performance. Vibrations can adversely affect accuracy, generating unwanted 
oscillations that the control system must be able to compensate for. 

3.6.2 MODELING THE VIBRATIONS GENERATED BY THE 
GRINDER 

To simulate the vibrations generated by the grinder mounted on the end-effector of the 
robot, sinusoidal forces along the three Cartesian axes x, y, and z were assumed. We 
chose to consider a frequency range of 10 to 200 Hz. This choice is based on existing 
studies that analyse vibrations typical of sanding tools, such as orbital sanders. In 
particular, a study by Radwin et al. (1990) shows that tools such as the “palm grip orbital 
sander” produce significant accelerations up to 150 Hz. However, to include potential 
variations in vibrational behaviour and ensure complete modelling of system dynamics, 
an overestimation up to 200 Hz was considered. 
In the following list, we summarize the frequency-weighted arms accelerations for a 
common sander tool: 

• Tool: Palm Grip Orbital  

• Frequency: 150 Hz 
• Acceleration RMS along X: 25.4 m/s2 

• Acceleration RMS along Y: 30.3 m/s2 

• Acceleration RMS along Z: 45.6 m/s2 
Frequency-weighted accelerations, expressed in m/s2, were used to calculate the forces 
applied on the robot end-effector through the relationship 𝐹 = 𝑚𝑎, where 𝑚 represents 
the combined mass of the end-effector and the grinder. 
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3.6.3 NORMAL FORCE 

The normal force 𝐹# represents the reaction of the surface to contact with the grinder. It 
is modelled by combining an elastic and a viscous component: 

𝐹# = 𝐾(∆𝑧) + 𝐶𝑣 
where: 

• 𝐾 is the elastic constant (stiffness) of the surface. 
• ∆𝑧 is the deformation of the surface along the z axis due to contact. 

• 𝐶 is the viscous damping coefficient. 

• 𝑣 is the relative velocity along the z axis. 

3.6.4 TANGENTIAL FRICTIONAL FRICTION FORCE (FRICTION) 

The tangential friction force 𝐹$ is a force acting along the plane tangent to the contact 
surface. It depends on the normal force and the relative tangential velocity of the grinder 
on the surface. The tangential friction force is modelled as: 

𝐹$ = −𝑘%	𝐹# 	
𝑣&
‖𝑣&‖

 

where: 
• 𝑘% is a constant describing the relationship between the normal force and the 

tangential friction force. 

• 𝐹# is the normal force calculated as described above. 

• 𝑣& = (𝑣' , 𝑣() is the tangential relative velocity vector between the grinder and the 
surface. 

• ‖𝑣&‖ is the norm of the tangential velocity. 
The negative sign indicates that the friction force is always opposite to the direction of 
the grinder's tangential motion.  

3.6.5 SIMULATION SETUP 

Simulations were carried out using Python and the Adam library (Automatic 
Differentiation for Rigid-Body-Dynamics AlgorithMs). Adam was chosen for its ability to 
efficiently compute robot dynamics, using automatic differentiation to generate 
gradients, Jacobians, and Hessians of dynamic quantities. These derivatives were not 
necessary for carrying out these simulations, but they could come in handy for the co-
design of the robot-grinder hardware interface. All simulations were based on the 
Doosan h2515 robot model. 
The PD controller was implemented with a time step of 1 ms, which allowed the control 
actions to be updated with a high frequency. The simulation was instead performed with 
a smaller time step of 1/16 ms, to ensure accurate modelling of the system dynamics and 
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minimize numerical integration errors. 
To model the contact between the end-effector and the surface, we considered a 
stiffness of the surface 𝐾 = 3 ∙ 10) N/m, typical for a standard car chassis. The damping 
coefficient 𝐶 was set equal to the square root of 𝐾. 
The reference trajectory for the end-effector is a sine wave with varying amplitudes, 
designed to test the robot's ability to follow smooth motions. 

3.6.6 COMPARISON OF ACCURACY OF INTEGRATION METHODS  

In this section, we analyse the accuracy of fourth-order Runge-Kutta (RK4) and Euler 
numerical integration methods, when controlling the robot with an Operational Space 
Control (OSC) method. The goal was to determine how the accuracy of the simulation 
varies with the choice of integration method and time step, with the latter being varied 
from 1/32 ms up to 1 ms, doubling the value at each iteration. The accuracy of each test 
was measured as the difference between the trajectory calculated with a certain time 
step and the ideal trajectory, obtained with the lowest time step (1/64 ms). This difference 
is expressed in terms of the infinity norm of the error between the two trajectories. 

 
Figure 7: Integration error as a function of integration time step for the Euler and RK4 numerical integration methods. 

Our results, depicted in Figure 7, show that when using the typical integration time step 
of 1 ms, the resulting integration error is about 1 for Euler and 0.3 for RK4. These errors 
are both too large for considering the simulation results reliable. The plot shows that to 
get to a simulation error below 0.01, which we could consider low enough for our 
purposes of co-design, we should use an integration step of 1/16 ms with RK4, and lower 
than 1/32 ms with Euler. However, these integration steps are both extremely small, 
which means that the resulting simulations would be extremely computationally 
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demanding. Moreover, in these simulations we have not considered the hardware 
interface between the grinder and the end-effector, which could make things even 
worse. For this reason, we believe that it would be better to investigate the use of more 
advanced integration techniques, that could provide better accuracy with lower 
computation times, such as exponential integrators.  
 

4 PLANNING AND SCHEDULING 

4.1 INTRODUCTION 

The objective of this activity is to develop planning solutions to allow the robot to execute 
its tasks with a sufficient level of performance and within adequate safety margins. 
The objectives of the activity are best understood if we refer to the figures that describe 
the overall architecture of the system.  

 
Figure 8: The conceptual architecture of the cleaning robot. 

In Figure 8, we have reported the conceptual architecture describing the Cleaning 
Robot. The task scheduling component (TS) receives a list of defects that need to be 
reworked. These defects are classified by severity, type and location. The TS decides a 
sequence of defects to treat considering: 1. The type of cleaning policy that needs to be 
applied, 2. The degree of severity and hence the importance of each defect, 3. The 
constraint on time. The decision is implemented by a motion planner that decides the 
best trajectory between two adjacent tasks in the sequence. The motion planning is 
human-aware since it is connected to an environment monitoring system. Whenever a 
human is detected in the workspace of the robot, her/his motion is predicted using the 
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techniques discussed in D4.1 and the motion plan is adjusted to minimise the risk of 
collision or accidents. 
The architecture of the sensing robot is shown in Figure 9. 
In this case the task scheduling component must generate a trajectory that visits and 
identifies the defects. The area where the defects are most likely to be found can be 
guessed using the statistical data coming from previous execution. Indeed, a defect is 
with a good probability the result of a systematic problem that is created by common 
causes (e.g., two electrodes have not been re-dressed recently and generate a 
substantial number of sparks during the welding process). However, the task scheduler 
must combine the visit of areas where defects have been found in the past with the 
exploration of new areas (things could change over time).    
 

 
Figure 9: The logical architecture of the sensing robot. 

The workings of the human-aware motion planner are essentially the same as for the 
CR. To summarise, the project requires the development of two algorithms for task 
scheduling that support the different phases of the project, and of a human aware 
motion planner. 

4.2 STATE OF THE ART 

The state of the art in task scheduling and in human aware motion planning is quite rich. 
Broadly speaking, a robot planning algorithm is used to decide a sequence of actions 
that accomplish a task. The simplest type of robot planning is called motion planning, 
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and its purpose is to find a sequence of elementary motion that enable the robot to move 
from a point A to a point B. This task can be far from trivial for the presence of possible 
occlusions and for the possible occurrence of self-collisions (i.e., the robot’s linking 
colliding with each other).  
The motion planning problem was formulated in the late seventies of the past century 
[Lozano79] as a search through the robot configuration space. A larger number of papers 
(see [Lav06]) have attacked this problem from several directions. Some of the most 
popular approaches fall in the class of sampling-based approaches [Kav96, Lav01], or in 
iterative optimisation [Rat09, Sch14]. 
Collision-free motion planning is certainly important, but not sufficient to enable the 
robot’s operation in a complex space. Indeed, a robot is not simply supposed to operate 
in the environment, but also to operate changes.  This simple fact requires a behaviour 
that is no longer modelled as continuous in time. Depending on the topology of the 
underlying space and on the state of the objects that are immersed in it, the robot may 
have to perform different actions to achieve the same tasks. In the terms of Alami et al. 
[Al90], Branicky et al. [Bra02], and Hauser et al. [Ha10], robot planning has an inherently 
multimodal structure. In simpler terms, robot planning is “best viewed as a hybrid 
discrete–continuous search problem that involves selecting a finite sequence of discrete 
mode types (e.g., which objects to pick and place), continuous mode parameters (such 
as the poses and grasps of the movable objects), and continuous motion paths within 
each mode to a configuration that is in the intersection with the subsequent mode” 
[Gar21]. 
 In the AI community, the planning problem has been modelled as finding the best 
sequence of discrete actions that move a transition system into a final desired state 
[Gh16]. Let us consider a system with: 

• A state space 𝑋, 

• An initial state 𝑥* 
• A final desired state	𝑥+ 
• An action space 𝑈(𝑥), which contains all the actions that are active at state 𝑥 

• A transition function 𝑥, = 𝑓(𝑥, 𝑢)), which specifies the new state 𝑥,, starting from a 
state 𝑥, and applying the action 𝑢 

The planning problem is about finding a sequence of input that guarantees to move 
the system from the state 𝑥*   into 𝑥+ . A more sophisticated version can also require 
that the solution is optimal in some sense (e.g., time employed, energy spent, etc.). A 
robot planning problem is translated into a discrete system by means of factoring 
techniques. The typical approach is to create a graph-based representation, in which 
nodes represent possible states of the system, and transitions are associated with 
robot actions. Once a problem is formulated in discrete terms, we can solve the 
problem using classic graph search algorithms. However, given the huge dimension 
of the typical state-space, finding a solution within an acceptable time requires very 
effective heuristics [Bo01, Ho01]. 
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The problem of motion planning and task planning can be approached using a joint 
optimisation approach that takes decisions both on the discrete variables and on the 
continuous variables [Tou15]. Although an interesting development, this type of 
approach falls outside the scope of the project’s activities. 
The activities that we will develop in MAGICIAN have important connection with the 
following areas: 

• Selecting a number of cleaning tasks to execute within a time budget. As 
discussed later, this problem can be cast into the framework of orienteering 
problems [Gun16] 

• Selecting a trajectory for the sensing robot that covers an area visiting the area 
where the defects are more likely to be found. This problem can be addressed 
within the framework of ergodic control [Dong23] 

• Human aware motion planning: the problem is finding a trajectory for the 
robot that does not compromise the safety and the psychological well-being 
of the person. This step requires integrating human motion prediction see 
(D3.1) within a motion planner. In the literature, we find model-based 
approaches [Ole24] and other approaches that exploit neural networks 
[Wan24]. In the section below we will discuss our specific solution. 

 

4.3 PLANNING AND WORK SCHEDULING FOR THE CR 

As apparent from Figure 8, the Task Scheduling component receives as its input a set of 
locations 𝐶 = {𝐶-, … , 𝐶#./}on the car body where defects are likely to be found.  Each 
location is associated with the following parameters: 
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Figure 10: Planning pipeline for MAGICIAN "classic approach". 

• A position in the workspace of the robot; this position is a “standard position” for 
the robot to commence the cleaning operations. For instance, the robot end-
effector is required to be at a given distance from the surface (e.g., 10cm) and with 
a pose orthogonal to the surface; 

• A reward 𝑆0 associated with the possible removal of the defect; this parameter 
includes a component related to the degree of severity of the defect and a 
component related to the importance (which is a function of its position); 

• A probability 𝜋0 that the defect is actually present; our SR cannot guarantee 100% 
accuracy, and the presence of the defect can be associated with a measure of 
confidence; 

• A processing time 𝜏0 required to remove the defect; this time is estimated based 
on the severity of the defect and on its location within the robot’s workspace. 

Very importantly, we have a maximum time 𝑇1 to complete the exploration (dictated by 
the so-called Takt time). At the moment of the writing, we have set-up a procedure 
which follows a quite standard decomposition between motion and task planning, 
which is illustrated in Figure 10. 

4.3.1 ROADMAP CREATION 

The first step is finding a roadmap, i.e., a graph-based representation joining the 
different locations. This step can be performed using standard planning algorithm to 
connect the points pairwise. We are experimenting sampling-based methods such as 
RRT [Kuf00], RRT* [Kar11] and optimisation-based solution such as CHOMP [Rat09] and 
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model predictive control [Ole24, Sle21]. The construction of a roadmap amounts to the 
creation of a graph in which: 

• The nodes correspond to the locations 𝐶 = {𝐶-, … , 𝐶#./} 
• The arcs correspond to the pairwise motion between two nodes, with each arc 

having a travel cost 𝜏02 . This time is evaluated by a point-to-point motion planner. 
We remind that nodes are associated with an additional working time 𝜏0 . 

Ideally, the graph is completely connected, but in practice a node could be unreachable 
from another time within a maximum time. In this case, some of the transitions could be 
missing. 
Once the robot arm has reached the operation area associated with each location, the 
robot starts executing dynamic motion primitives [Sav23] to remove the defect. Such 
primitives are the result of a dynamic equation of the form: 

 
where 𝑦 is the desired position (e.g., of the end-effector), 𝑧 is associated with velocity 𝑓(𝑥) 
is a forcing term and 𝑥 is an auxiliary variable, which vanishes with exponential rate and 
is used to modulate in time the forcing action. The latter is expressed as a combination 
of Gaussian kernels: 

 
Each kernel starts its forcing action a modulated time 𝑐0  and has a duration determined 
by ℎ0 . In essence a dynamic motion primitive generates a damped oscillation with a 
forcing term given by a sum of Gaussian Kernel. DMPs can be used to imitate human 
operations and their parameters can be learned by observing the human (imitation 
learning). This aspect is analysed in depth in D3.1. 

4.3.2 LOCATION SELECTION AND SCHEDULING 

The location selection and scheduling problem is a typical problem of graph 
optimisation. One of the best-known problems of this kind is the so-called Traveling 
Salesman Problem (TSP) [Jun95], in which an agent is required to visit a set of nodes. 
The nodes are connected by arcs associated with a temporal cost. The TSP amounts to 
finding a sequence of nodes that the agent should visit so that all the nodes are 
eventually visited (1) and the total travel time is minimised (2). 
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The TSP has been shown to be strongly NP-hard, meaning that no pseudo-polynomial 
algorithm exists to solve it. However, a large literature has identified many efficient 
heuristics to produce good sub-optimal solutions. The TSP is widely applicable in fields 
such as logistics and manufacturing, where minimizing travel costs and times is crucial. 
In our case, the problem takes a different form because of the maximum time budget 
constraint. This modified problem is known as the Orienteering Problem (OP) and is 
defined as follows [Gol87]. Consider a set of nodes connected by a graph, each one 
associated with a reward that is earned if the node is visited. Suppose an agent starts its 
travel at a first node (1) and finishes at a final destination node (n). The problem amounts 
to finding a selection and a sequence of nodes so that the total travel time remains below 
𝑇1 (1) and the total reward is maximised (2). 
The OP is essentially a combination of the TSP and the knapsack problem, where the 
focus is on selecting a subset of nodes that maximizes the overall profit or reward within 
the given time constraint [Kant et al., 2022]. Unlike the TSP, the OP allows for flexibility, 
as not all nodes need to be visited. This makes the OP more suitable for scenarios like 
ours, where only certain nodes need to be visited based on priority and within a time 
budget. 
The problem can be modelled as an Integer Linear Programming (ILP) problem or solved 
using heuristic solutions. When the number of nodes is reasonably small, like in our case, 
the solution time is very low even for a full ILP formulation [Archetti et al., 2007]. 

4.3.2.1 MATHEMATICAL FORMULATION OF THE ORIENTEERING 
PROBLEM 

Consider a complete graph 𝐻 = (𝐴, 𝐵), where 𝐴	 = 	 {1, 2, 3, … , 𝑛}		represents the set of nodes 
(defects) and 𝐵 represents the edges (paths between defects). Let node 1 and node 
𝑛	represent the start and end depots, respectively. The profit associated with cleaning 
defect 𝑥 is ϕ' , and  ψ'( is 1 if the edge between node 𝑥 and node 𝑦 is selected; otherwise, 
it is 0. The ordinal position of node 𝑖 is u0 and the travel time between nodes 𝑥 and 𝑦 is 
𝑇'( . The time required to fix defect 𝑖 is 𝑡0 . 

The Integer Linear Programming (ILP) formulation for this OP can be described as 
follows [Kan22]: 
Objective Function 
Maximize the total profit of selected nodes: 

Maximize^^ϕ'ψ'(

#

(34

#./

'34

 

 
Constraints 
1. Ensure the route starts and ends at the given depots: 
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^ψ/'

#

'34

= 1	

^ψ'#

#./

'3/

= 1	

 
2. Ensure each node is visited at most once: 

^ψ'5

#./

'3/

= ^ψ5(

#

(34

≤ 1	 ∀𝑘 = 2,… , 𝑛 − 1 

 
3. Ensure the total travel time does not exceed the time budget 𝑇Max: 

^^𝑇'(ψ'(

#

(34

#./

'3/

+^ 𝑡0^ψ02

#

(3/

#./

'34

≤ 𝑇Max 

 
4. Sub-tour elimination constraints: 

2 ≤ 𝑢' ≤ 𝑛	 ∀𝑥 = 2,… , 𝑛	
𝑢' − 𝑢( + 1 ≤ (𝑛 − 1)a1 − ψ'(b	 ∀𝑥 ≠ 𝑦, ∀𝑥, 𝑦 = 2,… , 𝑛	

 
5. Ensure binary decision variables: 

ψ'( ∈ {0,1}	 ∀𝑥, 𝑦 = 1,… , 𝑛 

 
In this formulation, constraints ensure the route starts and ends at the designated 
depots, no node is visited more than once, the total travel time is within the allowable 
budget, and sub-tours are eliminated. The objective function aims to maximize the profit 
associated with the visited nodes, reflecting the prioritization of defects. This approach 
aligns well with the problem requirements, allowing the cleaning robot to focus on the 
most critical defects within the given time constraint. 

4.3.3 INPUT PARAMETERS AND DATA TRANSFORMATION 

The formulated orienteering problem requires a set of input parameters which need to 
be derived from the output of the sensing robot and the robotic movement data. The 
input required by the model is as follows: 

• Time Constraint (𝑇Max) 
• Travel Times Matrix (𝑇'() 
• Estimated Cleaning Times (𝑡0) 
• Profit for Cleaning Defect (ϕ0) 
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While the time constraint is a constant, the other inputs have to be derived by three 
different modules, as visualized in Figure 11. 

4.3.3.1 TRAVEL TIMES MATRIX 

To create the travel times matrix (𝑇'(), as visualized in Figure 11 as the “Distance Matrix 
Calculator”, we need to follow these detailed steps: 
1. Collect Defect Locations: Gather the coordinates of each defect identified by the 
sensing robot. The locations should be in the form of a list of 
tuples, ([(𝑥/, 𝑦/), (𝑥4, 𝑦4), … , (𝑥#, 𝑦#)]). 
2. Calculate Euclidean Distances: Compute the Euclidean distance between each pair 
of defects using the formula: 

					𝑑'( =	ija𝑥( −	𝑥'b
4 +	a𝑦( −	𝑦'b

4k	

			   This will give you a distance matrix 𝐷 where each entry 𝐷'( represents the distance 
between defect 𝑥 and defect 𝑦. 
3. Convert Distances to Travel Times: Transform the distance matrix into a travel time 
matrix by applying a conversion factor based on the robot's speed. If the robot's speed is 
𝑣 (distance per unit time), the travel time 𝑇'(	can be calculated as: 

						𝑇'( =
𝐷'(
𝑣
	

The resulting travel time matrix 𝑇 will contain the time required for the robot to travel 
between each pair of defects. 
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Figure 11: Path Optimizer Framework. 

4.3.3.2 PROFIT BASED ON PRIORITIES 

The next step is to calculate the importance of cleaning each defect in terms of profit, 
visualized as “Defect Importance Calculator” in Figure 11. To determine the profit ϕ0 	for 
cleaning each defect, follow these steps: 
1. Identify Defect Types and Severities: From the sensing robot's output, obtain the type 
and severity of each defect. These should be formatted as lists, [𝑡𝑦𝑝𝑒/, 𝑡𝑦𝑝𝑒4, … , 𝑡𝑦𝑝𝑒#] and 
[𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦/, 𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦4, … , 𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦#] respectively. 
2. Define Priority Formula: Develop a formula to calculate the priority of cleaning each 
defect based on its type and severity. For example, a simple weighted sum could be 
used: 

			𝜙0 = 	𝛼 ⋅ 𝑡𝑦𝑝𝑒0 + 	𝛽 ⋅ 𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦0 
where 𝛼	and 𝛽	are weights that reflect the relative importance of defect type and 
severity. 

4.3.3.3 ESTIMATED CLEANING TIMES 

Lastly, to estimate the cleaning times (𝑡0) for each defect for the “Cleaning Times 
Calculator” in Figure 11, use the following procedure: 
1. Obtain Cleaning Time Data: Based on historical data or expert input, determine the 
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average time required to fix defects of different types and severities. This information can 
be compiled into a reference table. 
2. Calculate Individual Cleaning Times: Using the defect type and severity data, lookup 
or calculate the estimated cleaning time for each defect. This could be done using a 
predefined function or lookup table. For example: 

			(𝑡0) = 	𝑓(𝑡𝑦𝑝𝑒0 , 𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦0)	
where 𝑓 is a function or table that returns the cleaning time based on the defect's type 
and severity. 
3. Format the Cleaning Times: Compile the estimated cleaning times into a list 
[𝑡/, 𝑡4, … , 𝑡#], ensuring that all times are in a consistent unit (e.g., seconds or minutes). 
By following these steps, you can transform the raw data from the sensing robot into the 
required input parameters for the orienteering problem model. This structured 
approach ensures the inputs are accurate and formatted correctly for effective 
optimization. 

4.3.4 SOLUTION APPROACHES 

We have implemented the algorithm in the context of MAGICIAN and are now in the 
process of testing and benchmarking. We are also considering a stochastic 
generalization of the problem to account for the probability of a false positive, which 
makes the reward a stochastic variable [Gun16]. Given the critical importance of fast 
computation in real-time applications, especially in robotic systems, we need to explore 
methods that balance speed and solution quality effectively. 
In this context, exact optimization methods such as those offered by solvers like Gurobi 
and SCIP (commonly used for solving orienteering problems) are known for their 
precision in solving Integer Linear Programming (ILP) problems. However, while these 
methods can guarantee an optimal solution, their high computational requirements 
make them less practical for real-time applications where solutions must be computed 
in seconds. 
To meet the real-time demands of systems like MAGICIAN, we are also considering 
heuristic methods, which prioritize speed and simplicity. Techniques such as nearest 
neighbour, greedy algorithms, or local search generate approximate solutions more 
rapidly. Although these methods may not always yield the optimal solution, they are 
more suitable for real-time decision-making due to their ability to produce sufficiently 
good solutions within stringent time constraints. 
Additionally, genetic algorithms (GAs) and other evolutionary algorithms (EAs) present 
a promising alternative. These algorithms, inspired by natural evolution, excel at 
exploring large solution spaces and often find near-optimal solutions within reasonable 
time limits. Their parallel nature makes them particularly attractive for rapid 
computation in real-time applications. 
Given the need for both speed and solution quality, we are exploring a hybrid approach 
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that combines heuristic methods with evolutionary algorithms. This approach leverages 
the speed of heuristics and the robust solution quality of genetic algorithms, allowing us 
to achieve quick and reliable results within the stringent time constraints of our system. 
By integrating these strategies, we aim to optimize the cleaning robot’s path while 
ensuring efficiency and responsiveness in real-time applications. 

4.3.4.1 MODEL EXTENSIONS 

The problem lends itself to useful generalisations. A first useful generalisation is the so-
called Team Orienteering Problem (TOP) [Ar07], in which several paths are synthesized 
in parallel and executed by different agents. In this scenario, the reward is earned only 
during the first visit to a node, incentivizing the algorithm to find non-intersecting paths. 
This is particularly relevant for our work with multiple robotic manipulators operating 
simultaneously. When robotic arms are involved, we must also account for the possibility 
of collisions. This can be mitigated by either imposing a separation of the time windows 
during which transitions in potential conflict occur or partitioning the graph to minimize 
intersections, assigning each subgraph statically to a single agent. 
Multi-Agent Systems represent one of the most important extensions of this problem. 
By incorporating multiple robotic agents (e.g., cleaning robots or manipulators), the 
system can execute parallel processes, significantly improving efficiency and reducing 
overall completion times. This extension aligns with the Team Orienteering Problem, as 
it allows for the optimization of multiple paths for multiple agents, ensuring an optimal 
distribution of tasks while preventing collisions. Collision avoidance can be achieved 
through dynamic coordination, further enhancing the performance of the system. 
Additional model extensions can further improve the problem’s applicability to more 
complex, real-world scenarios: 

• Confidence Intervals for Sensing Outputs: By integrating uncertainty into the 
model, particularly regarding the reliability of defect identification, we can better 
prioritize tasks. This approach would involve adding confidence intervals for 
sensing outputs to ensure that tasks are selected based on the most reliable data. 

• Variable Cleaning or Repair Times: Instead of assuming a fixed time to repair or 
clean each defect, the model could be extended to allow for variable times. This 
would enable a cost-benefit analysis, helping the system decide how long to stay 
at a defect based on its severity and the expected improvement in repair quality. 

• Dynamic Learning Mechanisms: Over time, the model could incorporate learning 
mechanisms, adapting based on real-time feedback regarding travel speeds, 
cleaning times, or repair success. Machine learning techniques could further 
refine route planning and task prioritization, enabling the system to evolve with 
changing conditions. 

• 3D Distance Calculations: Currently, the model assumes that defects are mapped 
on a 2D plane. However, if actual 3D distances better reflect travel times, 
incorporating these calculations into the model could improve accuracy. 
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• Stochastic Extensions: The problem can also incorporate stochastic elements, 
such as probabilistic travel times or uncertain repair outcomes. This would align 
the model with the Stochastic Orienteering Problem (St-OP), which is valuable for 
managing uncertainty and maximizing expected profit. 

Moreover, variations like the Clustered Orienteering Problem (COP), where defects are 
grouped into clusters, could also simplify the problem, allowing the system to focus on 
clusters of defects rather than individual ones, as suggested by Kant et al. (2022). 
By implementing these extensions, including the Team Orienteering Problem 
framework and multi-agent coordination, we can significantly improve both the 
efficiency and accuracy of the system while ensuring that operations such as robotic 
cleaning or manipulation are carried out optimally in real-world, complex environments. 

4.4 MOTION PLANNING MODULE 

As clear from Figure 10 and from the discussion above the execution of the primitives 
that move the robot between two locations and, to a lesser extent, of the DMPs adopted 
for defect removal, have to consider the possible presence of humans because the 
working environment is promiscuous.  
Our approach relies on the presence of a module that predicts the motion of the human 
for the next 1.5/2 s. If a possible accident is foreseen, the approach modifies the trajectory 
choices to mitigate the problem. 
We are currently considering two different approaches: 

• Roadmap manipulation 

• Replanning. 
At the time of this writing, we are still in the stage of evaluating different approaches to 
find the most suitable to our application. In the write-up below we report the main 
techniques that we are considering. 

4.4.1 ROADMAP MANIPULATION 

The starting point is a roadmap, which can be built joining the locations as discussed 
above. We can enrich the roadmap with other “transition points” with the sole purpose 
of facilitating the motion between two different locations.  
The presence of a human and her/his predicted motion makes some of the arcs 
temporarily unusable because of the possible collisions. We can deal with this problem 
by adapting the orienteering problem to operate with time varying constraints and time 
windows.  
The idea is that the travel time of an arc 𝜏02 depends on the time in which the arc is 
travelled [Ver14] and each node can be visited within a time frame [Ver13]. 
This approach can be set-up as an Integer Linear Program, but very efficient heuristics 
have been proposed in the literature. The most demanding activity is the query to decide 



 
 

 
 

44 
 

D4.1 HUMAN-ROBOT INTERFACES AND 
INTELLIGENCE 

when an arc is potentially interested by a collision. We can take this decision in a “lazy” 
way, i.e., while the exploration is being made [Boh01]. We are currently trying to adapt 
the algorithm in [Ver13] to this modality.  
A different approach is based on the technique shown in [Hu22]. The idea is that the PRM 
is extended with temporal information. The idea is that we start from a PRM and then, 
based on the presence of moving obstacles, we decide a time interval in which each 
node is available. Then, during the query phase, we apply a variant of the A* algorithm 
with time-varying costs. 

4.4.2 REPLANNING 

In this case, we assume that the detection of human motion takes place after trajectory 
connecting two points has been decided. In this case, we can apply directly state-of-the-
art model based [Ole24] or neural based [Wan24] approaches to design the trajectory 
that joins the two points avoiding accidents. 
Another possibility is to use an approach similar to that in [Jai04].  We create our PRM 
using only the static information. Then, while we explore the graph, we can make a lazy 
evaluation of possible collisions. When we find one, we can try to reconstruct a different 
strategy connecting the point before and the point after the collision by using RRT. 
Finally, we are looking at reactive versions of RRT and RRT*, which can be found 
respectively in [Cef19] and [Ot16]. In this case the trajectory is changed using very efficient 
solutions to account for the presence of obstacles. The reactive behaviour is easy to 
implement but cannot take advantage of the prediction of the human motion, and the 
result has potentially a lower performance. Indeed, the robot is forced to move slowly to 
avoid a possible collision that can occur at any time, while exploiting the prediction 
allows for an anticipatory behaviour and move along trajectories that are reasonably 
collision-free. 

4.5 PLANNING AND SCHEDULING FOR THE SR 

As regards the scheduling activities for the SR, we are in the typical case for which we 
need a correct balance between exploitation and exploration. On the one hand, we 
seek the defects in the area where they are most likely to be found based on the 
historical data (exploitation), on the other we need to explore the car-body in search of 
new areas where defects could be found (e.g., due to changes in the condition of the 
production phases preceding the analysis).  
The two phases have to be properly orchestrated. Indeed, given the fixed amount of time 
available, the exploitation phase will have to account for the following facts. 

1. The visual inspection has to be concentrated in the areas where, based in the 
historical data, the defects are most likely to be found. In addition, defects should 
receive a larger priority according to the area where they are; 

2. The tactile inspection has to be concentrated in areas that are not easily reachable 
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by the camera (e.g., the area underneath the doors or on their side); 
3. Some slack time has to be reserved for tactile inspection for defects that are 

classified as uncertain during visual inspection. 
The exploration phase should be very efficient in discovering potentially new areas with 
defects and at avoiding areas that have been carefully analysed during the exploitation 
phase. 
In our first development run, we have decided to statically partition the duration of the 
two phases and use specific solutions for each of them. In the future we plan to explore 
a more dynamic interaction between the two phases. 

4.5.1.1 EXPLOITATION 

For the exploitation phase, a possibility is to use again a variation of the orienteering 
methods described above. Based on the previous history, the system can identify a 
number of locations associated with a high level of criticality and with a probability that 
a defect will materialise. 
We can again construct a roadmap joining all the different locations distinguishing 
between fly-over phases, in which we move very quickly between two areas, and 
inspection phases, where we inspect the area remaining at a fixed distance from the car-
body. The framework is very similar to the one that we have described for defect removal. 
The only remarkable difference is that for the inspection phase we can utilize two types 
of sensors (visual and tactile). The implications are illustrated below. 

4.5.1.2 INTEGRATING DIFFERENT SENSORS IN SR OPERATION 
SCHEDULING 

Let 𝐷 be a defect at a given location and let V denote the simple use of the visual sensor, 
and T denote the use of the tactile sensor. Suppose we know, from the previous runs, a 
good estimate of the probability 𝑃(𝐷) = 𝐿 that a defect will appear in that location.  If we 
know  

• the accuracy and the probability of a false positive for the visual sensor 𝑃(𝑉|𝐷) = 𝑀 
and 𝑃a𝑉x𝐷b = 𝑚,   

• the accuracy of the tactile sensor 𝑃(𝑇|𝐷) = 𝑁 and the probability of a false positive 
𝑃a𝑇x𝐷b = 𝑛,  

• assuming that the two readings are independent, 
we can estimate the probability that the defect will appear to each sensor or to their 
combined use by respectively using one of the following equations: 

𝑃(D|V) =
𝑃(𝑉|𝐷)𝑃(𝐷)

𝑃(𝑉|𝐷)𝑃(𝐷) + 𝑃a𝑉x𝐷b𝑃a𝐷b
=

𝑀𝐿
𝑀𝐿 + (1 − 𝐿)𝑚
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𝑃(D|T) =
𝑃(𝑇|𝐷)𝑃(𝐷)

𝑃(𝑇|𝐷)𝑃(𝐷) + 𝑃a𝑇x𝐷b𝑃a𝐷b
=

𝑁𝐿
𝑁𝐿 + 𝑛(1 − 𝐿)

 

𝑃(D	|T	V) =
𝑃(𝑉|𝐷)𝑃(𝑇|𝐷)𝑃(𝐷)

𝑃(𝑉|𝐷)𝑃(𝑇|𝐷)𝑃(𝐷) + 𝑃a𝑉x𝐷b𝑃a𝑇x𝐷b𝑃a𝐷b
=

𝑁𝑀𝐿
𝑁𝑀𝐿 + 𝑛𝑚(1 − 𝐿)

 

It is easy to see that the combined use of the tactile sensor combined with the visual 
sensor gives advantages over the latter only if 𝑁	 ≥ 𝑛. As an example, we plot the ratio 
9:𝐷;𝑇𝑉<
9:𝐷;𝑉<  as a function of 𝑃a𝑇x𝐷b, for 𝑀 = 0.5,𝑚 = 0.1, 𝑁 = 0.4, 𝐿 = 0.8. 

As intuitive, we have convenience in using the second sensor only if its accuracy is 
greater that the probability of false negative (see Figure 122). The degree in which this 
choice can be convenient depends on the different probabilities and can be estimated 
online based on the frequencies of the different events. 
Generally speaking, we have convenience in using multiple sensors iff: 

𝑃(𝐷|TV) ≤ 𝑃(𝐷|V) ≤ 𝑃(𝐷) ≤ 𝑃(𝐷|𝑉) ≤ 𝑃(𝐷|𝑉𝑇) 

It can be shown that this is verified if 𝑃(𝑉|𝐷) ≥ 𝑃a𝑉x𝐷b ∧ 𝑃(𝑇|𝐷) ≥ 𝑃a𝑇x𝐷b. In essence, we are 
saying that the presence of a positive answer from each sensor improves the knowledge 
on the probability of the presence or of the absence of a defect. The computation shown 
above allows us to compute the amount of the improvement. 

 
Figure 12: Ratio of the relation between the probability of using visual + tactile sensor over using only the visual 

sensors. The ratio is computed for different values of the false negatives. 

Clearly, the processing time and the probability associated with the different locations 
depends on this choice. At the beginning of each work cycle, we can compute for each 
location the probability that we will identify the defect with the sole use of the visual 
sensor. If this probability is lower than a desired threshold, we can opt for the combined 
use of vision and tactile sensor. This choice has a direct impact on the choice of the 
parameters that are used to set up the orienteering problem.  
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4.5.1.2.1 EXPLORATION 

As regards the exploration phase, one of the most promising approaches that we are 
evaluating is based on computational geometry. In the past years, the UNITN group has 
proposed the application of Llyod based methods to many distributed control problems 
[Bol22], including rendezvous, dynamic coverage, motion of agents with line-of-sight 
preservation constraints. The idea is to decompose the environment into Voronoi cells 
and implement a distributed gradient descent method choosing a cost function fitted 
to our purposes. For instance, if the desired task is exploration, we can utilise a cost 
function that penalises the places that robot visited already. The approach can be used 
for a single agent, but it generalises nicely to multi-agent systems without suffering 
deadlock or livelock conditions. We are now adapting the idea to the manipulator 
setting, where issues like possible interference between the different kinematic 
structures take centre stage. 
 

5 MOTION GENERATION AND ACTIVE SENSING 

5.1 INTRODUCTION 

As we discussed above, once the SR reaches an area of potential interest, it collects 
information on the potential presence of defects. We use the term “active sensing” to 
denote feedback control strategy that guise the system in order to maximise the 
amount of information collected. In some sense, we can consider the feedback control 
strategy as a means to generate feedback controlled motion primitives that execute the 
sensing task. In this section, we mention the strategies we are putting in place to 
implement this idea. 

5.2 STATE OF THE ART 

Active sensing is the problem of control design for carrying out sensing tasks [Kreu05, 
Cai09]. Applications are in a large number, and include object classification/recognition 
[Den02, Arb99] and next viewpoint selection [Vaz01].  
Generally speaking, we can model an active sensing algorithm as going through four 
different phases,  Figure 13. Based on the previous information we update our belief state 
(e.g., our best guess on where are the defects). The typical way beliefs are created and 
updated are through filtering techniques. Kalman filters can be used effectively when 
the posterior distribution is known to be Gaussian [Leu06]. In our case, we cannot make 
any such assumption. Therefore, we will adopt general Bayesian filtering [Mil15] because 
it allows us to consider non-Gaussian Distribution and easily integrate the physical 
information on the dynamics of the robot performing the search. 
The step B is to evaluate the information that can be collected given our sensing state 
and our state belief. Given a state, the possible ways to evaluate the utility of a 
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measurement can be different. Very informative is for our case the Fisher information 
matrix, which quantifies the ability of a random variable associated with a measurement 
to estimate an unknown parameter [Em98]. In some sense, the fisher information 
predicts where the derivative of the expected signal to the variance of the noise is high 
producing more salient data.  
 The next step is to decide a control action that drives robot trajectories following the 
distribution maps. Following [Mil15], we will apply ergodic control as described in the 
next section.  
 

 
Figure 13: Typical phases of information Based sensing algorithm (courtesy [Mil15]) 

5.3 ERGODIC CONTROL 

In addition to the “classic” approaches described earlier, we are approaching the 
problem of defect search adopting an active sensing paradigm based on ergodic control 
[Mil15].  By using this the exploration and exploitation phases are strongly harmonised. 
Ergodic control is a technique that determines a motion policy for a robot such that 
statistics given by a prior distribution and the spatial statistics averaged through time 
converge. 
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Figure 14:  Example of ergodic control (a) as opposed to information maximisation (b). [Courtesy [Mil15]) 

It is telling to look at example in Figure 14. In the bottom part, we see that the trajectory 
seeks the points with the maximum information, whilst in the top part (ergodic control) 
the objective is to fill the space according to the prior distribution. In our case the prior 
distribution is given by the historical probability of finding defects.  
Given our search domain 𝑋 

C(x) =
1
T
� δa𝑥 − 𝑥(𝑡)b𝑑𝑡
=

-
 

with 𝛿(. ) being the Dirac delta, represents the spatial statistics of the process 𝑥(𝑡). Our 
goal is to find a control law to make these statistics converge to the estimated probability 
density function EID(x). 

If we represent 𝐶(𝑥) by its Fourier coefficients 𝑐5a𝑥(𝑡)b, and EID(x) by its Fourier 
coefficients ϕ5 , we can express the deviation of the trajectory x(t) from erogidicity as 
[Mat11] 

. 
The use of the Fourier coefficients makes the distance from ergodicity differentiable in 
𝑥(𝑡) allowing us to set up an optimal control problem where the cost function is given 
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by:  

 
Classic active sensing solutions, divide the exploration and the exploitation phase 
switching between two cost functions. The application of ergodic control allows us to 
treat the two phases in the same way. The only differentiation is in the way we collect 
measurements. During the exploration phase, we choose our sampling policy to 
prioritise coverage, while in the exploitation phase we increase our sampling rate in the 
proximity of the hotspots. We report an example from [Mil15] 
 

 
 
In the example we show the location of a 2D target. In the top row, the figure shows the 
update of the belief state, whilst in the bottom row we show the trajectory computed by 
ergodic control. The trajectory allows us to update the information and progressively 
refine the pdf EID(x) where the target can be found. 
The application of ergodic control is not straightforward: it requires some research efforts 
that we are putting in place. For this reason, we will first adopt the more classic approach 
based on orienteering and Llyod-based navigation described above. 

5.4 MOTION GENERATION MODULE 

MAGICIAN control architecture will employ the CartesI/O cartesian control framework 
developed at IIT [Laurenzi2019]: it allows the untrained user to perform complex motion 
tasks with robotics platforms by leveraging a simple, auto-generated ROS-based 
interface. 
Contrary to other motion control frameworks (e.g., ROS MoveIt!), CartesI/O focuses on 
the execution of Cartesian trajectories that are specified online rather than planned in 
advance. Moreover, it addresses the problem of generating such motions within a hard 
Real-Time (RT) control loop. 
 As highlighted in the picture below, CartesI/O: 

• Provides a uniform way to programmatically interact with a Cartesian controller; 
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• Automatically generates a complete ROS API for sending references to the 
controller; 

• Allows the use of the ROS-based API also in the case that the solver is running 
inside a real-time thread. 
 

Figure 15:  The main components of the software architecture with its motion modules. 

5.5 TASK AND HUMAN PRESENCE DRIVEN MOTION/IMPEDANCE 
MODULATION PRINCIPLES 

An example of what is achievable with CartesI/O motion generation and the XBot 
middleware is a Cartesian Impedance modulation principle, as anticipated in Section 
3.5. Acting in the task space, the control law formula is now the following: 

𝜏  =  𝐽" a𝐾 (𝑥! − 𝑥)  +  𝐷 (𝑥!̇ − �̇�)  +  𝑓%%b 

where 𝐾	is the Cartesian stiffness gain, 𝐷	is the Cartesian damping gain, 𝑥 ,  𝑥! are the 
actual and the desired Cartesian tool control point pose, respectively, and 𝑓%% an 
optional feed-forward force.  
Acting in the Cartesian space, it is possible to modulate the manipulator compliance in 
specific Cartesian direction, tackling the physical interaction in a more convenient and 
flexible way. As an example, for a grinding/polishing task where the manipulator follows 
a rigid surface, the stiffness along the normal direction can be lowered, assuring to keep 
the contact with the object, while still following with a high precision the desired path in 
the other directions. Figure 16 introduces such an example, with a mobile collaborative 
robot following a curved surface in a simulated environment (Gazebo). The plugin, being 
implemented with the XBot tools, is ready to be used in a real scenario. 
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Figure 16:  A mobile robot performing a surface following task in the Gazebo simulation. 

 
In general, with the developed modules, the stiffness (and damping) gains can be set 
online, depending on the status of the task in execution. Eventually, such parameters 
would be set automatically, with techniques of variable impedance modulation, based 
on the status of the tasks and on the task requirements [Bertoni2022]. 

5.5.1 SELF-COLLISIONS AVOIDANCE MODULE 

The above-mentioned software framework employed, allowed to easily integrate in the 
important modules for the optimization and safety of the robot generated motions. One 
such capability of the CartesI/O motion generation module is a self-collision avoidance 
system. Implemented as a constraint in the stack of tasks defined, such module takes 
into consideration the collision meshes of the robot model (usually simpler shapes that 
envelop the real robot meshes). During the robot motion, the module checks online for 
eventual collisions among the robot's link and modifies accordingly the trajectories for a 
safe robot motion.    
 

6 CONCLUSIONS 
The algorithmic methodologies and technological solutions presented in this report 
represent the foundation tools considered and are currently under development for the 
realization of the robotic system of MAGICIAN. 
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The development of these tools is expected to continue in the next period as their 
implementation and testing on the MAGICIAN robotic platform will progress. Further 
extensions and upgrades in the functionalities of the robotic solution will be performed 
based on the outcome of their implementation and validation in the field during the 
execution of the defect detection and reworking use case tasks.  
The tuning of the control tools will be carried out considering the performance 
measured and the requirements imposed by the use case tasks. For example, additional 
control methodologies and/or tuning may be necessary to address issues imposed by 
the interaction and end-effector intrinsic vibrations. 
The physical interaction parameters of the robotic platform such as impedance settings 
and contact force regulation for satisfying the necessary task performance will also form 
and interesting topic of the follow up activities.  
Similarly, adaptation and upgrades on the task planning and scheduling tools will be 
guided by the results obtained and observed execution efficiency. 
Finally, developments on the interfaces of the different tools will be necessary to 
facilitate their integration within the overall software and control framework and the 
communication among the different algorithmic and technological components. 
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