

P R O J E C T N O

101120731

P R O J E C T A C R O N Y M

MAGICIAN

P R O J E C T T I T L E :

IMMERSIVE LEARNING FOR
IMPERFECTION DETECTION AND REPAIR
THROUGH HUMAN-ROBOT INTERACTION

C A L L / T O P I C :

HORIZON-CL4-2022-DIGITAL-EMERGING-
02-07

S T A R T D A T E O F P R O J E C T :

01.10.2023

D U R A T I O N :

48 MONTHS

D U E D A T E O F D E L I V E R A B L E :

30.09.2024

A C T U A L S U B M I S S I O N D A T E :

30.09.2024

DELIVERABLE
D4.1

Human-Robot interfaces and intelligence

2

D4.1 HUMAN-ROBOT INTERFACES AND
INTELLIGENCE

Work Package WP4 - Robotic platform and interfaces

Associated Task T4.1, T4.2, T4.3, T4.4, T4.5, T4.6,

Deliverable Lead Partner IIT

Main author(s) Nikolaos Tsagarakis, Luca Muratore, Gionata
Salvetti, Nicole D’Aurizio, Domenico
Prattichizzo, Luigi Palopoli, Geert Driessen, Roos
van Dongen

Internal Reviewer(s) Daniele Fontanelli

Version 1.0

DISSEMINATION LEVEL

PU Public X

SEN Sensitive - limited under GA conditions

CHANGE CONTROL
DOCUMENT HISTORY

VERSION DATE CHANGE HISTORY AUTHOR(S) ORGANISATION

0.1 24.09.2024 First Draft Nikos
Tsagarakis IIT

0.2 27.09.2024 Internal Review Daniele
Fontanelli UNITN

1.0 30.09.2024 Final Version Nikos
Tsagarakis IIT

3

D4.1 HUMAN-ROBOT INTERFACES AND
INTELLIGENCE

Co-funded by the European Union. Views and opinions expressed
are however those of the author(s) only and do not necessarily
reflect those of the European Union or the European Commission.
Neither the European Union nor the granting authority can be held
responsible for them.

This deliverable is part of a project that has received funding from
the European Union’s Horizon Europe research and innovation
programme under grant agreement no. 101120731.

EXECUTIVE SUMMARY
D4.1 presents the progress made within WP4 towards the realization of human-robot
interfaces, specialized end-effectors, control and planning methodologies and overall
software and control architecture for the robotic system under development in
MAGICIAN. The report introduces the advancements for the above topics during the first
year of the project providing details on the development of dedicated wearable tactile
devices, the overall control framework, which leverages the XBot2 middleware,
presenting the current status of the motion control and task planning and scheduling
algorithms that are considered to enable the motion and interaction performance
needed as well to permit the robotic platform to prioritize the tasks to be executed
related to defect detection and reworking. The presented algorithmic and technological
tools will continue evolve in the following period of the project as the robotic system
develops and the first experimental trials are carried out.
The objective of this deliverable is to present and provide details of the advancement
made in the development of the first version of the technological and algorithmic tools
considered within WP4 for addressing the MAGICIAN platform requirements and
challenges in terms of human-robot interfaces, end-effector tools, software, control and
planning components and their overall integration within the MAGICIAN software and
control framework.
The main achievements and findings associated with the work progress performed in
WP4 and reported in D4.1 includes the followings:

• Tactile perception modules have been developed, including a wearable tactile
device and a handheld tactile device, each designed to account for different user
needs and applications. The devices permit to carry out scanning actions
resembling the tactile exploration typically performed during surface
inspections.

• The first version of control methodologies for providing adaptive robot
interactions have been realized and tested in simulation, including the realization
of motion and impedance regulation tools for both human-robot and
environment-robot interaction.

4

D4.1 HUMAN-ROBOT INTERFACES AND
INTELLIGENCE

• The XBot-based framework has been explored as an overall soft and control
integration framework and its first integration with the commercial robotic
system has been performed.

• Planning and scheduling algorithms and tools have been explored and developed
to optimize the robot’s defect detection and reworking tasks.

• Motion generation tools have been realized to allows to generate and perform
complex motion tasks by leveraging a simple, auto-generated ROS-based
interface.

DEVIATIONS
No deviations to report.

5

D4.1 HUMAN-ROBOT INTERFACES AND
INTELLIGENCE

TABLE OF CONTENTS
1 INTRODUCTION .. 9

1.1 PURPOSE AND SCOPE .. 9

1.2 CONTRIBUTION TO PROJECT OBJECTIVES .. 10

1.3 RELATION TO OTHER WORK PACKAGES .. 11

1.4 STRUCTURE OF THE DOCUMENT .. 12

1.5 SYSTEM OVERVIEW .. 12

1.5.1 Requirements and Specifications ... 13

2 HUMAN-ROBOT INTERFACE .. 13

2.1 INTRODUCTION ... 13

2.2 STATE OF THE ART .. 14

2.3 OBJECTIVES AND REQUIREMENTS .. 14

2.4 TACTILE PERCEPTION MODULE ... 15

2.5 INTEGRATION IN THE HUMAN-ROBOT INTERFACE .. 17

2.6 CHALLENGES AND LIMITATIONS .. 18

3 MOTION AND INTERACTION CONTROL ... 19

3.1 INTRODUCTION ... 19

3.2 STATE OF THE ART ... 20

3.3 OBJECTIVES AND REQUIREMENTS .. 21

3.4 OVERALL CONTROL FRAMEWORK BASED ON XBOT .. 22

3.4.1 HARDWARE ABSTraction layer ... 23

3.4.2 Implementing behaviors ... 25

3.5 MOTION/IMPEDANCE CONTROL ... 26

3.5.1 Gravity compensated teaching/interaction mode .. 27

3.6 CO-DESIGN OF ROBOT-GRINDER INTERFACE .. 27

3.6.1 Contact force modeling .. 28

3.6.2 Modeling the Vibrations Generated by the grinder .. 28

3.6.3 Normal Force .. 29

3.6.4 Tangential Frictional Friction Force (Friction) ... 29

3.6.5 Simulation SETUP ... 29

3.6.6 Comparison of Accuracy of Integration Methods .. 30

4 PLANNING AND SCHEDULING ... 31

4.1 INTRODUCTION ... 31

6

D4.1 HUMAN-ROBOT INTERFACES AND
INTELLIGENCE

4.2 STATE OF THE ART ... 32

4.3 PLANNING AND WORK SCHEDULING FOR THE CR .. 34

4.3.1 ROADMAP CREATION .. 35

4.3.2 Location Selection and scheduling .. 36

4.3.2.1 Mathematical Formulation of the Orienteering Problem ... 37

4.3.3 Input parameters and data transformation ... 38

4.3.3.1 Travel Times Matrix .. 39

4.3.3.2 Profit Based on Priorities .. 40

4.3.3.3 Estimated Cleaning Times .. 40

4.3.4 Solution Approaches .. 41

4.3.4.1 Model Extensions ... 42

4.4 MOTION PLANNING MODULE ... 43

4.4.1 Roadmap Manipulation .. 43

4.4.2 Replanning ... 44

4.5 PLANNING AND SCHEDULING FOR THE SR ... 44

4.5.1.1 Exploitation ... 45

4.5.1.2 Integrating different sensors in SR operation scheduling ... 45

4.5.1.2.1 Exploration .. 47

5 MOTION GENERATION AND ACTIVE SENSING ... 47

5.1 INTRODUCTION ... 47

5.2 STATE OF THE ART .. 47

5.3 ERGODIC CONTROL ... 48

5.4 MOTION GENERATION MODULE ... 50

5.5 TASK AND HUMAN PRESENCE DRIVEN MOTION/IMPEDANCE MODULATION
PRINCIPLES .. 51

5.5.1 SELF-COLLISIONS Avoidance module ... 52

6 CONCLUSIONS .. 52

7 REFERENCES .. 54

7

D4.1 HUMAN-ROBOT INTERFACES AND
INTELLIGENCE

LIST OF TABLES
NO TABLE OF FIGURES ENTRIES FOUND.

LIST OF FIGURES
Figure 1: The wearable interface is equipped with a PLA tip, which can be 3D printed with varying texture
resolutions (0.3, 0.2, 0.1, and 0.05 mm). These different resolutions are designed to enhance the magnification
of tactile signals, allowing for more precise detection of the defect’s features. ... 15
Figure 2: The handheld interface equipped with a scallop component. The scallop is 3D printed using a
combination of ABS and TPU materials to ensure effective defect detection while maintaining optimal contact
between the surface and the scallop. Different patterns for the teeth arrangement can be employed to
customize the detection process, allowing the interface to accurately identify various types of defects. 17

Figure 3: The tactile system is composed of various modules, each serving a specific function within the overall
setup. The tactile perception module is designed to be versatile, allowing it to be equipped with different end
effectors tailored for surface scanning. This module can be integrated into various interfaces, which are
specifically designed either for use by human operators or for mounting on robotic platforms. 18

Figure 4: Overview of the MAGICIAN framework. ... 23

Figure 5: Xbot2 implemented class hierarchy and related UML diagram. .. 24

Figure 6: States and permitted transitions of the ControlPlugin lifecycle. .. 25

Figure 7: Integration error as a function of integration time step for the Euler and RK4 numerical integration
methods. ... 30

Figure 8: The conceptual architecture of the cleaning robot. ... 31

Figure 9: The logical architecture of the sensing robot. .. 32

Figure 10: Planning pipeline for MAGICIAN "classic approach". .. 35

Figure 11: Path Optimizer Framework. ... 40

Figure 12: Ratio of the relation between the probability of using visual + tactile sensor over using only the visual
sensors. The ratio is computed for different values of the false negatives. .. 46

Figure 13: Typical pahses of information Based sensing algorithm (courtesy [Mil15]) ... 48

Figure 14: Example of ergodic control (a) as opposed to information maximisation (b). [Courtesy [Mil15]) 49

Figure 15: The main components of the software architecture with its motion modules………………………………50

Figure 16: A mobile robot performing a surface following task in the Gazebo simulation. 52

8

D4.1 HUMAN-ROBOT INTERFACES AND
INTELLIGENCE

LIST OF ABBREVATIONS

ACRONYM DESCRIPTION

D Deliverable

EC European Commission

WP Work package

WT Work task

CR Cleaning robot

SR Sensing robot

9

D4.1 HUMAN-ROBOT INTERFACES AND
INTELLIGENCE

1 INTRODUCTION
This deliverable presents the progress made during the first year of the MAGICIAN
project, focusing on the development of a robotic platform and its interfaces designed
for defect detection and reworking processes. The interfaces serve primarily to acquire
tactile and motion data, which will then be replicated by the robotic platform to perform
autonomous defect sensing and cleaning operations. Key challenges addressed include
the design of intuitive interfaces for precise defect detection and the implementation of
impedance and force control methods for enhanced safety and adaptability.
Additionally, the deliverable outlines the development of advanced planning and
scheduling algorithms that optimize task sequencing for defect detection and
reworking, ensuring efficient and collision-free operations in dynamic environments.

1.1 PURPOSE AND SCOPE

The purpose of this deliverable is to provide an overview, outlining the progress made in
the development of human-robot interfaces, end-effectors, and control methodologies
for the robotic platform, which constitute the core technological components of the
MAGICIAN project for autonomous defect detection and reworking processes. These
systems are designed to enhance the robot's ability to autonomously perform defect
sensing, cleaning, and reworking tasks in industrial environments. This document
outlines the design and implementation of these technologies during the first year of
the MAGICIAN project.
The human-robot interfaces developed include a wearable and a handheld tactile
device. The wearable device, equipped with sensors on the palm, allows for intuitive
surface inspections, using interchangeable probe tips to simulate different tactile
interactions for detecting defects and imperfections on the car body. The handheld
device, featuring a scallop-shaped probe, provides flexibility by covering larger surface
areas while detecting smaller defects. Both devices have interchangeable end-effectors
and tactile sensors, making them adaptable to different use cases and complementing
the camera system by enhancing detection accuracy, especially in challenging areas
such as edges or larger surfaces.
In terms of control methodologies, the deliverable highlights the development of
impedance and force control strategies implemented via the XBot2 middleware. These
strategies allow the robot to adapt to varying external forces, ensuring safety and
precision in dynamic environments. The impedance control is further enhanced by
introducing a gravity-compensated teaching mode, which enables intuitive human
interaction for pose or trajectory teaching, with the robot remaining compliant with the
external forces while compensating for gravity.
This deliverable also discusses the development of task planning and scheduling
algorithms that allow the robotic platform to prioritize and execute defect detection and
reworking tasks efficiently. The system optimizes the sequence of operations based on

10

D4.1 HUMAN-ROBOT INTERFACES AND
INTELLIGENCE

defect severity, likelihood, and time constraints, while motion planning ensures collision-
free navigation, accounting for environmental factors such as human presence. The
deliverable highlights roadmap-based scheduling techniques, dynamic motion
primitives, and trajectory adjustments, laying the groundwork for a fully autonomous
robotic system that enhances efficiency and safety in industrial operations.
This document sets the foundation for subsequent iterations and refinements, laying the
groundwork for a fully autonomous robotic system capable of defect detection,
reworking, and cleaning operations in industrial processes.

1.2 CONTRIBUTION TO PROJECT OBJECTIVES

The progress reported in this deliverable directly contributes to the broader goals of the
MAGICIAN project, which encompass scientific, technological, and demonstration
objectives. Specifically, the objectives that this work supports are:

Scientific and Technological Objectives

• O1: A robotic perception module integrating visual and tactile sensors for
defect analysis and classification.

• O2: A robotic cleaning module with a specialized end-effector for defect
reworking.

• O3: A software robotic platform integrating services for perception and
cleaning modules.

• O4: A closed-loop defect detection and avoidance system for robotic and
welding processes.

• O5: Development of two TRL 7 integrated prototypes for defect analysis and
reworking.

Social Sciences and Humanities (SSH) Objectives

• O6: A human-centred approach to human-robot collaboration, promoting
usability, safety, and trustworthiness.

Demonstration Objectives

• O7: Demonstration of the prototypes in operational scenarios.

• O8: Expansion of MAGICIAN’s scope and applicability via Financial Support to
Third Parties (FSTP).

The development of human-robot interfaces and control methodologies detailed in this

11

D4.1 HUMAN-ROBOT INTERFACES AND
INTELLIGENCE

deliverable is crucial to the MAGICIAN platform capabilities. These advancements enable
the platform to perform defect detection, cleaning, and reworking operations
autonomously. Implementing impedance and force control systems enhances safety
and adaptability during complex industrial processes, while the planning and
scheduling algorithms ensure optimal task execution. These contributions align with the
overall project goals of delivering a highly automated, adaptable, and efficient system
for defect handling and reworking, ultimately advancing the automation of industrial
processes and demonstrating the effectiveness of the MAGICIAN platform in operational
environments.

1.3 RELATION TO OTHER WORK PACKAGES

As the work done in this WP supports all the objectives of the MAGICIAN project, as
detailed in the previous section, the relation is quite tight with all the other WPs. In
particular, WP4 is entirely devoted to the definition and implementation of the robotic
platform and its interfaces, developing the control, planning and scheduling algorithms
for both the CR and the SR. A synthetic list of the most important relations is offered
next.

• WP2 – Use case definition and platform design: The robotic solutions developed
in the WP are primarily defined by the specific requirements of the automotive
use case, which is the MAGICIAN main focus. This use case imposes unique
challenges related to the system in terms of end-effector design, reworking
effectiveness, safety, integration with the perception module, and time and cost
constraints. These challenges, being addressed in the first developments of the
WP4 work, are briefly outlined in this report.

• WP3 – Data acquisition and skills learning: WP4 covers the main technological
developments on the MAGICIAN CR and SR robots, hence its activities are closely
interconnected with the work carried out in WP3. Planning and scheduling rely
on defect analysis and predictions of human operator movements, which is
covered in T3.1. Motion control and active sensing directly use data processed
through the perception pipeline of T3.2. The motion strategies and the robot
control have an intimate relation with the way the operators carry out their job,
which is observed and understood in T3.3. However, the robotic platform
capabilities will also reshape the work of WP3, since the robotic arm motion
capabilities have a direct impact on the available perception strategies and on
their effectiveness in due course.

• WP5 - Integration and performance analysis: The components developed in
WP4 and outlined in this document will be integrated into the final platform (T5.1)
and included in the demonstrator (T5.2), thus contributing to the project's KPIs.

• WP6 – Cascade funding management: As the robotic platform will be utilized,
with the necessary adaptations, in subprojects from the cascade funding scheme,
the WP findings will be essential in providing support and technical assistance

12

D4.1 HUMAN-ROBOT INTERFACES AND
INTELLIGENCE

(T6.4).

1.4 STRUCTURE OF THE DOCUMENT

This document is structured into eight main sections, detailing the development and
progress of the robotic platform, human-robot interfaces, motion control, and planning
components as part of the MAGICIAN project. Each section addresses key aspects of the
system's design, implementation, and integration, with a final section dedicated to
future development and planning.
Chapter 2 focuses on the development of human-robot interfaces, specifically the tactile
perception modules. It reviews the state of the art in human-robot interaction, defines
the objectives and requirements for the interface, and presents the methodologies
employed. The chapter also highlights the integration of the tactile modules into the
robotic platform, along with preliminary results and key challenges encountered during
development.
Chapter 3 covers the design and implementation of control methodologies, including
impedance and motion control for safe and adaptive robot interactions. It describes the
state of the art in control technologies and introduces the XBot-based control
framework used in the project. Additionally, it discusses the gravity-compensated
teaching/interaction mode developed to enhance user-robot collaboration.
Chapter 4 outlines the planning and scheduling algorithms developed to optimize the
robot’s defect detection and reworking tasks. It details the work scheduling component,
motion planning module, and the integration of these elements to ensure efficient,
collision-free task execution. Chapter 5, instead, focuses on motion generation and active
sensing; this chapter discusses the development of motion generation modules,
highlighting task-driven motion and impedance modulation principles.
Chapter 6 summarizes the key outcomes and achievements of the first year of
development in WP4. It discusses the current state of the robotic platform and its
components, as well as challenges and areas for improvement identified during testing.
Lastly, Chapter 7 outlines the future direction of WP4, including further development
and refinement of the robotic platform, interfaces, and control methodologies. It
highlights the next steps for integration and testing, with a focus on achieving fully
autonomous defect detection and reworking operations.
A comprehensive list of references used throughout the document is reported in
Chapter 8, which covers the scientific and technological foundations that support the
research and development in WP4.

1.5 SYSTEM OVERVIEW

The robotic system developed within the MAGICIAN project is built around a
collaborative robotic platform, specifically the Doosan H2515 cobot. This robot is
designed for tasks requiring precision and safety, offering advanced defect detection

13

D4.1 HUMAN-ROBOT INTERFACES AND
INTELLIGENCE

and reworking capabilities. The Doosan H2515 features six-axis control, an extended
reach of 1500 mm, a payload capacity of 25 kg, and a repeatability of 0.1 mm, making it
ideal for handling complex tasks in industrial environments. The cobot's advanced safety
features, including six load cells for real-time force sensing, ensure minimal contact
forces and high precision during operation, enhancing both safety and performance in
collaborative settings.
The system also integrates tactile sensors into wearable and handheld devices, which
allow the robot to acquire detailed surface information and autonomously replicate
human-like movements during defect detection and cleaning operations.

1.5.1 REQUIREMENTS AND SPECIFICATIONS

The system requirements for the robotic platform emphasize safety, precision,
adaptability, and integration. The Doosan H2515 robot was selected for its robust
capabilities in handling industrial tasks, including defect detection and reworking. Key
specifications include:

• Payload capacity: 25 kg, allowing the robot to handle a variety of tools and
parts.

• Reach: 1500 mm, enabling the robot to cover large surface areas.
• Repeatability: 0.1 mm, ensuring high precision in tasks such as grinding and

defect cleaning.
• Safety features: Six-axis force sensors ensuring a contact force of 0.2 N,

guaranteeing high sensitivity in defect detection.
• Communication protocols: Ethernet (TCP/IP), ModBUS, and Profinet IO,

providing flexible connectivity options.
• Programming: The cobot supports intuitive block-based programming and

pre-configured routines, simplifying the setup for different tasks. Additionally,
the robot’s flange is equipped with connectors (6+6 I/O) for secure and efficient
tool integration.

• Compliance: The system adheres to international safety standards, including
EN ISO 13849-1 and EN ISO 10218-1.

These specifications ensure the platform can be easily integrated with other hardware
and systems developed in the project while maintaining compliance with industry
standards.

2 HUMAN-ROBOT INTERFACE

2.1 INTRODUCTION

The Human-Robot Interface addresses the critical task of defect detection and

14

D4.1 HUMAN-ROBOT INTERFACES AND
INTELLIGENCE

reworking in car-body manufacturing through advanced robotics and sensing
technologies. A key component of this effort is the acquisition of a comprehensive tactile
dataset, crucial for enhancing the accuracy of defect classification and reworking
processes. To achieve this, we developed different haptic interfaces, one wearable and
one hand-held, to realistically acquire the interaction forces and accelerations that
workers experience during the inspection phase. The interfaces have been designed to
ensure they do not impede the operator’s ability to detect and classify defects. Despite
utilizing basic sensors, these interfaces have demonstrated promising results in defect
detection and identification, enabling the collection of detailed data that accurately
represents the forces involved. In addition to the haptic interfaces, the grinder tool used
for defect reworking is equipped with force/torque sensors. This setup supports a
learning-by-demonstration approach, allowing the cleaning robot to learn the proper
reworking procedures from human operators. Both the defect detection and grinding
tools will feature fiducial markers for precise trajectory tracking. After deploying the
system, a haptic ring will provide discrete feedback to operators, informing them about
the outcomes of post-reworking inspections and verifications.
This report details the development and evaluation of the tactile interface and its
integration with the robotic system, aiming to enhance the overall efficacy of defect
detection and reworking operations in the MAGICIAN project.

2.2 STATE OF THE ART

The tactile interfaces developed in MAGICIAN leverage cutting-edge wearable haptic
technologies. Drawing on IIT’s expertise, we developed highly accurate and responsive
haptic solutions. To capture the detailed nature of defects, we acquired both static, force-
based signals using force sensors [Chinello2012, Pacchierotti2017] and dynamic,
acceleration-based signals [Kappassov2015]. Our approach aims to surpass current state-
of-art capabilities by transferring human defect-detection skills to a robotic platform.
This involves developing active sensing [Seminara2019, Pape2012], where the robot's
motion is guided by acquired data to seek further information on defect presence and
characteristics. The primary goal is to endow the robot with closed-loop sensorimotor
abilities through multi-modal Learning from Demonstration, allowing us to harness
human expertise effectively. Since vision-based defect detection has its limitations, the
sense of touch remains crucial. To transfer human expertise to robots, we combine
tracked hand motions with tactile data, capturing the forces and acceleration applied
during defect inspection. Our haptic technology relies on state-of-the-art solutions
[Prattichizzo2013], designed to realistically render the interaction forces experienced
during inspection.

2.3 OBJECTIVES AND REQUIREMENTS

The aim is to develop a tactile sensing interface that is both user-friendly for operators
and easily adaptable for integration into the robotic platform. Particular attention is

15

D4.1 HUMAN-ROBOT INTERFACES AND
INTELLIGENCE

being paid to design a system that seamlessly fits into the operator's normal workflow,
avoiding any interference or added complexity during defect detection tasks. At the
same time, the interface must be modular, allowing for easy extraction and transfer to
the robotic platform. This modularity is crucial for enabling the robot to "learn" from the
operator's expertise, by replicating the same tactile signals and feedback mechanisms
used by the operator to detect and refine surface defects. The challenge lies in ensuring
that the interface captures the nuanced forces and vibrations the operator relies on,
while remaining flexible enough to be applied across different environments and robotic
systems. Achieving this will help streamline the transition between human and robotic
inspection, enhancing both the accuracy and efficiency of the defect detection and
reworking process.

2.4 TACTILE PERCEPTION MODULE

The tactile sensors proposed in D3.1 have been integrated into two distinct types of
tactile devices: a wearable tactile device and a handheld tactile device, each designed to
account for different user needs and applications.
 The wearable tactile device has been designed to be worn on the user’s hand, with the
sensors strategically placed on the palm. This configuration allows the user to maintain
natural scanning movements, closely mimicking the tactile exploration typically
performed during surface inspections. The device is equipped with a probe that features
interchangeable pulps, each with different textures, Figure 1. This variety in texture is
intended to enhance the detection of surface defects by simulating different tactile
sensations, providing a more comprehensive and nuanced analysis. Each pulp, with a
radius of 8 mm, is designed to fit seamlessly with the force sensor's dimensions. These
pulps are 3D printed using PLA, a material selected for its strength and durability. This
ensures that the tips can withstand repeated use during surface scanning without
causing scratches or damage. Additionally, the choice of PLA helps maintain the
integrity of the force and vibration signals, allowing them to be transmitted clearly to the
tactile sensors without interference or signal loss.

Figure 1: The wearable interface is equipped with a PLA tip, which can be 3D printed with varying texture resolutions
(0.3, 0.2, 0.1, and 0.05 mm). These different resolutions are designed to enhance the magnification of tactile signals,

allowing for more precise detection of the defect’s features.

16

D4.1 HUMAN-ROBOT INTERFACES AND
INTELLIGENCE

The second device has been designed as a handheld tool, enabling the operator to
perform scanning movements that are slightly modified compared to freehand
exploration, while still allowing for freedom of movement, Figure 2. This handheld
approach allows for greater freedom and flexibility in the design of the probe. For
instance, in this design, a scallop-shaped probe was chosen. This shape increases the
surface area that can be scanned in a single acquisition, while simultaneously
miniaturizing the contact point with the surface. Such a design is particularly
advantageous for detecting smaller, more subtle defects, thus enhancing the overall
effectiveness of the tactile scanning process.
Although both designs utilize the same tactile sensor configurations, with
interchangeable end effectors between the two devices, they are suitable options to
optimize different requirements of the MAGICIAN project, including integration with the
camera system described in D3.1. The different end effectors shown in

Figure 3 are designed to complement the camera system, particularly in situations
where the camera encounters challenges in defect classification, such as uncertain
results or areas of car parts that are difficult to access.

17

D4.1 HUMAN-ROBOT INTERFACES AND
INTELLIGENCE

Figure 2: The handheld interface equipped with a scallop component. The scallop is 3D printed using a combination of
ABS and TPU materials to ensure effective defect detection while maintaining optimal contact between the surface and
the scallop. Different patterns for the teeth arrangement can be employed to customize the detection process, allowing

the interface to accurately identify various types of defects.

For instance, the probe tips with varied textures are particularly useful for detecting
defects that are hidden from the camera, such as those located on the edges of car parts.
The precise, localized scanning capability of these tips enhances the classification
process in such scenarios. Conversely, the scallop-shaped end effectors are
advantageous when the camera system identifies potential defects on larger surface
areas but with high uncertainty. In these cases, the scallop design help to maximizes the
scanned area, improving operational efficiency and ensuring more accurate defect
detection.

2.5 INTEGRATION IN THE HUMAN-ROBOT INTERFACE

The tactile perception module has been designed with an emphasis on modularity,
ensuring seamless integration across the various interfaces required by the MAGICIAN
project. This modularity allows the module to be easily adapted for different applications,
making it versatile enough to meet the diverse needs of defect detection in both
human-operated and robotic systems. At the core of the module there is the tactile
perception module, which has been engineered to be compatible with a wide range of
end effectors. The flexible design of the perception module ensures that it can be
mounted on multiple interfaces, whether the latter are wearable devices for a human
operator or robotic platforms for automated inspection tasks. Furthermore, the tactile
module is designed to accomplish the specific requirements of each scenario, such as
the precision needed for human-driven inspections or the robustness necessary for
robotic operations. This adaptability makes it an essential component in achieving the
project's goal of transferring human expertise in defect detection to robotic systems,
allowing the robot to replicate the tactile feedback that humans rely on.

18

D4.1 HUMAN-ROBOT INTERFACES AND
INTELLIGENCE

Figure 3: The tactile system is composed of various modules, each serving a specific function within the overall setup.

The tactile perception module is designed to be versatile, allowing it to be equipped with different end effectors tailored
for surface scanning. This module can be integrated into various interfaces, which are specifically designed either for

use by human operators or for mounting on robotic platforms.

2.6 CHALLENGES AND LIMITATIONS

The main challenges and limitations of the tactile perception module come from the
same constraints associated with wearable devices. Despite being designed with a
strong emphasis on wearability and comfort, the human interfaces do not fully
guarantee that operators can maintain their usual range of motion or workflow during
defect detection tasks. This is particularly important, as the tactile sensors need to
facilitate natural scanning movements without hindering the operators' dexterity.
Further research is required to better understand operator preferences between two key
options: a wearable solution which allows operators to perform scanning movements
like their traditional workflow but prevents direct hand contact with the car parts, and a
hand-held device that is potentially more comfortable but introduces changes to the
scanning procedure (but with the same limitation related to the avoided hand contact).
Each approach offers advantages and challenges, and it remains to be seen which one
will be favoured by operators in terms of ease of use and efficiency.
In addition to addressing these human interface challenges, more work needs to be
done to ensure proper integration between the tactile perception module and the
robotic platform. Establishing a seamless interconnection is critical for achieving the

19

D4.1 HUMAN-ROBOT INTERFACES AND
INTELLIGENCE

project's goal of transferring human expertise to the robot, particularly in defect
detection and reworking. The tactile data collected by the human-operated interface
must be accurately translated into actionable information for the robot, enabling it to
replicate the same scanning techniques and defect identification strategies used by
skilled workers.

3 MOTION AND INTERACTION CONTROL

3.1 INTRODUCTION

A robot control system is nowadays a distributed entity, which can be divided into two
components: (i) one that runs closer to the hardware and therefore benefits from the
least possible latency in accessing the underlying field bus, and (ii) a remote portion that
consists of several processes running on multiple machines, or even cloud-based
systems. The focus of this report is to propose a solution for the implementation of the
first type of software, which we refer to as the real-time middleware XBot2
[Laurenzi2023].
In this report, by real-time middleware, we mean the software framework that runs
closest to the target hardware and allows users to customize its behaviour to suit their
own needs, typically via a plugin-based architecture. For instance, the firmware inside a
digital signal processor (DSP) does not fall into this category, as it cannot be used to
invoke custom control code.
The proposed infrastructure will expose multiple integration points to enable, in the
context of MAGICIAN, multiple components to cooperate seamlessly at both the high-
rate real-time layer and the slower, non-real-time (non-RT) planning level. Our main
goals are the seamless support for mixed hardware topologies consisting of both real-
time and non-real-time devices, a component-based design, as well as a highly modular
architecture that promotes the reusability of its components.
Finally, in our view, components running under real-time constraints should have access
to the same high-level, easy-to-use APIs as their non-real-time counterparts. It is the
framework's responsibility to provide a real-time-capable toolbox, along with monitoring
and troubleshooting tools to simplify debugging, even at the real-time layer.
Real-time performance is usually not a requirement for a general-purpose operating
system or kernel, which tends to optimize overall system throughput, possibly penalizing
CPU-bound applications. Limiting ourselves to the open-source Linux ecosystem,
deterministic time behaviour can be achieved through two different approaches. The
first approach is to patch the "vanilla" Linux kernel to enable pre-emptive, priority-based
scheduling. This means that a high-priority thread can ideally execute as soon as it is
ready (e.g., wakes up from a timed sleep), by immediately halting any lower-priority
thread that may be running. This is the approach followed by the well-known
PREEMPT_RT patch (described at https://wiki.linuxfoundation.org/realtime/start). The

https://wiki.linuxfoundation.org/realtime/start

20

D4.1 HUMAN-ROBOT INTERFACES AND
INTELLIGENCE

second approach is the so-called dual-kernel method, where a companion co-kernel
intercepts all interrupts and schedules its own processes before the standard Linux
kernel. This strategy is followed by the notable Xenomai project (described at
https://source.denx.de/Xenomai/xenomai/-/wikis/Start_Here). From the developer’s
perspective, the main difference is that a dual-kernel approach comes with its own
"native" API to interact with the co-kernel, whereas the single-kernel approach requires
no custom API beyond standard UNIX/POSIX primitives.
In this section, we present a novel real-time middleware for robotic applications under
the name of XBot2. Compared to the previous version, XBotCore [Muratore2020], the
XBot2 framework is characterized by the following features:

• A fully dynamic hardware abstraction layer (HAL), supporting on-the-fly device
auto-discovery, along with the ability to generate high-level APIs for a simpler,
more transparent integration with behaviours, i.e., the user’s custom code.

• An improved and more flexible, multi-threaded plugin system for the
implementation of periodic behaviours.

• A set of operating system service abstractions that serve as building blocks for the
whole architecture and facilitate portability across different Real-Time Operating
Systems (RTOSs). Notably, due to a lack of appropriate abstractions, the previous
version, XBotCore, was limited to supporting only the Xenomai RT development
framework.

• A set of user-land facilities allowing internal components to communicate with
each other in a fully decoupled way. Lock-free synchronous and asynchronous
paradigms are provided. Leveraging these facilities, components (both at the HAL
and behaviour levels) can be seamlessly relocated across different execution
threads.

• A more robust and flexible dual-process, client-server approach to allow XBot2 to
communicate with robot hardware (or simulators), as opposed to the previous
single-process architecture. This layer simplifies XBot2’s support for multiple
simulators and robotic systems, as demonstrated by our Gazebo, PyBullet, and
MuJoCo integrations. This approach avoids a single point of failure and provides
process separation in XBot2.

In the following section, we present details and design ideas for each of these key
contributions. We also perform validation experiments on different robotic platforms,
both real and simulated via various simulation engines. To validate the framework’s real-
time performance, we provide data from experimental sessions involving both a
Xenomai-based host machine and a Linux/PREEMPT_RT one.

3.2 STATE OF THE ART

While other real-time middlewares have been developed by the research and industrial

https://source.denx.de/Xenomai/xenomai/-/wikis/Start_Here

21

D4.1 HUMAN-ROBOT INTERFACES AND
INTELLIGENCE

communities, none has established itself as a de facto standard, unlike the Robot
Operating System (ROS), which is by far the most common non-RT integration
framework for robotics. The OROCOS project, for instance, has been used in several
projects but is now rarely maintained or upgraded, making it difficult for third-party
organizations to adopt. Other examples include OpenRTM and PODO. Notably, the
successor to ROS, the ROS2 framework, plans to add real-time support as a feature,
thanks to its integration with the Data Distribution Service (DDS) as the transport layer,
along with careful design. However, RT support is still in its early phases. Other works
have adopted a mixed RT/non-RT architecture, where ROS coexists with RT-capable
components, similar to how XBot2 integrates with ROS.
This work builds on IIT’s experience in developing the precursor to XBot2, namely the
XBotCore framework. While a detailed description of XBotCore is beyond the scope of
this report, we will briefly mention its main limitations, which we aim to overcome with
XBot2. XBotCore provides a framework to execute real-time control code within a single
process running on a Xenomai-based host machine while also integrating with the ROS
framework (and others). It relies on a static threading model consisting of a real-time
thread and a "companion" non-RT thread. The real-time thread executes a basic
hardware abstraction layer (HAL) and schedules user modules (known as plugins), while
the non-RT thread provides a ROS-based API for external components. However, due to
a lack of suitable abstractions, plugins cannot rely on a unified, clear way to configure
themselves or communicate with each other, limiting effective code reuse and
component decoupling. Therefore, we set new base requirements to overcome these
limitations, as follows:

1. Seamless (i.e., completely managed by the framework) multi-thread support; a
component should be relocatable to a different thread without needing to adapt
its code.

2. Ability to develop decoupled components through appropriate configuration and
communication primitives.

3. Ability to adapt to any host OS or RTOS, through an appropriate operating system
abstraction layer.

3.3 OBJECTIVES AND REQUIREMENTS

This section presents a novel real-time middleware for robotic applications under the
name of XBot2. Compared to our previous iteration, XBotCore, the XBot2 framework is
characterized by the following requirements:

• A fully dynamic hardware abstraction layer (HAL), with support for on-the-fly
device auto-discovery, as well as the ability to generate high-level APIs for simpler
and more transparent integration with behaviours, i.e., the user's custom code.

22

D4.1 HUMAN-ROBOT INTERFACES AND
INTELLIGENCE

• An improved and more flexible, multi-threaded plugin system for the
implementation of periodic behaviours.

• A set of operating system service abstractions that serve as building blocks for the
whole architecture and facilitate its portability across different Real-Time
Operating Systems (RTOSs). In this regard, note that—due to the lack of
appropriate abstractions—the previous version of the architecture, XBotCore, had
the strong limitation of supporting only the Xenomai RT development framework.

• A set of user-land facilities allowing internal components to communicate with
each other in a fully decoupled way; lock-free synchronous and asynchronous
paradigms are provided. Leveraging these facilities, it is possible to realize
components (both at the HAL and behaviour level) that can be seamlessly
relocated across different execution threads.

• A more robust and flexible dual-process, client-server approach that allows XBot2
to communicate with the robot hardware (or simulator), as opposed to the
previous single-process architecture. Thanks to this layer, it is simple for XBot2 to
support multiple simulators and robotic systems (either custom or commercial),
as exemplified by our Gazebo, PyBullet, and MuJoCo integrations. This avoids a
single point of failure and provides process separation for XBot2.

3.4 OVERALL CONTROL FRAMEWORK BASED ON XBOT

The MAGICIAN control framework is depicted in Figure 4. Starting from the lowest level,
we are going to have a layer to control both the Doosan H2515 cobot and the MAGICIAN
End-Effector: we will use respectively the Real-Time DRFL API (Doosan Robotics
Framework Library, https://github.com/doosan-robotics/API-DRFL) and a custom
implementation of the SOEM library (Simple Open EtherCAT Master Library,
https://openethercatsociety.github.io/doc/soem/).
Exploiting the XBot2 software architecture, we are capable to control the full MAGICIAN
robot system in a transparent way either in simulation or in the real hardware: we will
highlight in the next subsections the features of the XBot2 that makes this possible.

https://github.com/doosan-robotics/API-DRFL
https://openethercatsociety.github.io/doc/soem/

23

D4.1 HUMAN-ROBOT INTERFACES AND
INTELLIGENCE

Figure 4: Overview of the MAGICIAN framework.

3.4.1 HARDWARE ABSTRACTION LAYER

The role of a hardware abstraction layer is twofold. First, to grant access - both in
transmission and reception - to some external device under suitable performance
requirements that depend on the specific device and use case. Whenever this is made
possible by the hardware interface, it should also perform automatic discovery of
connected device instances to reduce the configuration burden to a minimum for the
user. In the context of XBot2, we use the word 'hardware' in a relaxed sense, i.e. this could
mean either (i) direct access to the device's fieldbus (such as EtherCAT, Profibus, CAN,
etc.), or (ii) usage of a network interface (such as a UDP socket) connecting to the robot's
control box (as is often the case when dealing with commercial robots for research) or
any other - direct or indirect - way to reach the hardware or simulator.
Secondly, it must present the user of the framework with a programming interface that
abstracts away unnecessary details, therefore promoting the reuse of software
components whenever the hardware changes in a compatible way. For instance, the
user (or client) of the HAL system must not be required to modify his/her code if e.g., (i)
passing from simulation to experiments, (ii) changing a device vendor, or (iii) changing
the robot vendor entirely.
Finally, the HAL system must comply with our general requirements of Section 1.2, i.e.
the HAL should be relocatable to any execution thread in a transparent way, as well as
the HAL clients. To address this condition, XBot2's HAL system resorts to a client-server
approach, where two sides are defined:

• The DeviceDriver side is a unique per-device component that connects and

24

D4.1 HUMAN-ROBOT INTERFACES AND
INTELLIGENCE

communicates with the hardware. This acts as the server side of a device's HAL.

• The DeviceClient side, i.e. the component in charge to provide the proper API to
the user. Multiple instances of the client side usually exist in the system.

The XBot2 framework leaves maximum flexibility to the developer in choosing a way to
connect and synchronize the driver and client components. On the other hand, it also
provides suitable base classes that provide ready-to-use mechanisms that rely on a set
of primitives, therefore ensuring satisfaction of our generic requisites in a standardized
way. The implemented class hierarchy is structured as follows, with the relevant UML
diagram being shown in Figure 5.

Figure 5: Xbot2 implemented class hierarchy and related UML diagram.

From the user perspective, device drivers and clients are automatically loaded by XBot2's
HalManager during the framework initialization phase and based on a configuration file.
Available device clients can be inspected and used from a control module via the
RobotInterface object, as it will be explained in the next section.
As a final remark, device drivers and clients are loaded inside so-called containers, which
group together all devices of the same kind (e.g., all joints of a given type). Containers
can be employed to carry out operations that involve all devices at once, depending on
the characteristics of the hardware interface.

25

D4.1 HUMAN-ROBOT INTERFACES AND
INTELLIGENCE

3.4.2 IMPLEMENTING BEHAVIORS

Ultimately, the goal of XBot2 is to foster a simple and dynamic use of devices from control
(or monitoring) modules to realize some desired behaviour. The implementation thereof
happens inside a component called ControlPlugin, where the word ``plugin'' refers to
the ability to load the module itself inside the system at runtime dynamically.
The XBot2 ControlPlugin is made of three components, i.e.:

• A finite state machine describing the module's lifecycle;

• A set of facilities for named resource resolution;
• A RobotInterface object which grants access to the HAL's client side;

Figure 6: States and permitted transitions of the ControlPlugin lifecycle.

The ControlPlugin lifecycle describes all possible states for the component, and for each
state enforces a set of allowed transitions, as depicted in the figure below. The
implementer of a plugin can generate transitions and react to them as well, via callbacks.
For instance, a periodic task is implemented by assigning a callback to the Run state,
which is called upon every clock tick, according to the required period. The TaskManager
component is ultimately responsible for (i) the plugin execution according to the defined
lifecycle, (ii) the broadcast of information about the running modules state as well as
some relevant statistics (such as CPU time), and (iii) for providing a service that allows
other components of the system to emit events to change the plugin state (e.g., to start
a plugin).

26

D4.1 HUMAN-ROBOT INTERFACES AND
INTELLIGENCE

XBot2's RobotInterface has been introduced as a part of our previous iteration XBotCore,
and it has been upgraded to be the main access point for the user to the HAL's client
side. The RobotInterface component is part of the more general XBotInterface package,
which comprises (i) an XBotInterface base class, and two derived classes, namely (ii) the
ModelInterface, and (iii) the RobotInterface. Based on the observation that the generic
state of a multi-limbed robot, which is often made of over thirty degrees of freedom, is a
difficult quantity for humans to interpret and manipulate, the XBotInterface class
leverages the URDF and SRDF in order to present an interface to the robot state (e.g.
motor positions, velocities, torques, gains, and others) in a chain-by-chain fashion.
Indeed, each chain is usually of a manageable length and is characterized by a natural
ordering, i.e. from the base link to the tip link.
The ModelInterface class inherits such a chain-wise structure and adds on top a suite of
methods to retrieve several kinematic and dynamic quantities corresponding to the
robot state as described by the base class. A concrete implementation based on the
RBDL library is provided with the framework.
The RobotInterface class enables the connection of the inherited robot state to a robot
via a sense/mode pair of virtual methods. Two concrete implementations are provided,
namely (i) a ROS-based client library called RobotInterfaceRos; it connects to XBot2's
ROS API via suitable ROS topics, services, and actions and (ii) the XBot2's HAL client
library, called RobotInterfaceRt, will use the HAL client side as described in the section
above instead.
Thanks to this abstraction layer, control code that runs inside an XBot2 ControlPlugin is
moveable to a remote ROS node with minimal effort. Clearly, any real-time guarantee
will be lost in such a case.
For each ControlPlugin loaded into the system, an instance of RobotInterface is created.
On construction, it will dynamically load the client side of all defined HAL devices. The
user can then examine the HAL system via the getDevices template method, which will
return all device clients conforming to a given virtual interface. A generic control module
can be written by (i) using the most generic interface that allows the carrying out of the
task at hand and (ii) running optional code that requires a more specific interface only if
that interface is available on the target hardware.

3.5 MOTION/IMPEDANCE CONTROL

Implemented through the XBot middleware, various modules have been designed to
control the robot in different tasks and environments. One such module is a motion
generation system based on impedance control. The importance of such control scheme
is supported by various demonstrations from literature, beginning with the work of
[Hogan1985]. Given that modern robots are expected to operate in dynamic and evolving
environments, such the ones considered in the project, it is of fundamental importance
to account for the interaction forces experienced by the manipulator. These forces are
not only inevitable during manipulating objects or interacting with the environment, but

27

D4.1 HUMAN-ROBOT INTERFACES AND
INTELLIGENCE

they are also essential to consider for ensuring safety in the case of unexpected collisions.
This is crucial for both the protection of the robot, and, especially, for the safety of
humans working in proximity of the robot and/or collaborating with it. These
considerations form the basis for developing human-centred technologies, which are
the core mission of this project.
The impedance control can be implemented at different levels, i.e. at the
task/operational space and at the joint space. While the first is discussed later in the
Section 5.5, the latter is based on the following formula:
𝜏  =  𝐾(𝑞! − 𝑞)  +  𝐷 (𝑞!̇ − �̇�)  +  𝑀(𝑞)(�̈�!)  +  𝐶(𝑞,  �̇�)�̇�  +  𝑔(𝑞)  + 𝐽"(𝑞)𝑓
where 𝐾	is a matrix of stiffness gains, 𝐷	is a matrix of damping gains, 𝑀(𝑞) is the mass
matrix, 𝐶(𝑞, �̇�)�̇� are Coriolis torques, 𝑔(𝑞) are gravity torques, 𝐽"(𝑞) is the transposed
Jacobian matrix, and 𝑓	 any kind of other external forces due, for example, to interaction
with objects or people. By modulating the impedance parameters, it is possible to obtain
different levels of compliance, according to the needs. As mentioned earlier, this control
module is implemented using the XBot middleware and can be leveraged in real-time
control plugins when needed.

3.5.1 GRAVITY COMPENSATED TEACHING/INTERACTION MODE

A practical application of the implemented impedance control module is the gravity
compensated teaching/interaction mode. By appropriately tuning accordingly the
gains of the above formula, the robot behaviour can be fully compliant to external forces,
i.e. forces applied by the human, but still compensating the gravity, hence remaining still
when no external forces are present. This mode is useful to teach the robot particular
poses or trajectory, safely and effortlessly by intuitively moving the manipulator in the
wanted positions [Muratore2023].

3.6 CO-DESIGN OF ROBOT-GRINDER INTERFACE

A crucial aspect of the work is to assess the need for an interface between the end-
effector and the grinder. Such an interface could be fundamental in reducing vibrations
and better distributing contact forces, thus preventing damage to the robot and
improving the accuracy of operations. However, designing such as interface is not a
simple task. For instance, making it too stiff or not stiff enough could negatively affect
the performance of the entire system. For this reason, we believe that using co-design
could be our best option to design this interface in the best feasible way. Co-design is
based on the simultaneous optimization of hardware and control parameters, to achieve
top performance at a specific task. Therefore, we need to be able to evaluate the
behaviour of the robot accurately and efficiently for any given combination of hardware
and control parameters. In this study, we analyse our ability to simulate the behaviour of
the robot performing a grinding operation, using state-of-the-art numerical integration
techniques, which would then provide the foundation for our co-design framework.

28

D4.1 HUMAN-ROBOT INTERFACES AND
INTELLIGENCE

3.6.1 CONTACT FORCE MODELING

In grinding operations, the end-effector of the robot is subject to various forces. The two
main forces are:

• friction forces, generated when the end-effector contacts the surface,

• vibration forces, resulting from the internal dynamics of the grinder.
Friction forces emerge when the grinder touches the surface, opposing the motion.
These forces include the normal force, which acts perpendicularly to the surface, and the
tangential force, which opposes motion along the plane of contact. At the same time,
the grinder itself introduces vibrations into the system. These vibrations have different
amplitudes and frequencies, depending on the type of tool and its operating
characteristics. In our model, we simplified the forces generated by the grinder by
representing them as sinusoidal forces along the three Cartesian axes (x, y, z).
This approach, while being a simplification, effectively captures the effect of vibrations
on the robot, helping to understand the impact of these forces on overall system
performance. Vibrations can adversely affect accuracy, generating unwanted
oscillations that the control system must be able to compensate for.

3.6.2 MODELING THE VIBRATIONS GENERATED BY THE
GRINDER

To simulate the vibrations generated by the grinder mounted on the end-effector of the
robot, sinusoidal forces along the three Cartesian axes x, y, and z were assumed. We
chose to consider a frequency range of 10 to 200 Hz. This choice is based on existing
studies that analyse vibrations typical of sanding tools, such as orbital sanders. In
particular, a study by Radwin et al. (1990) shows that tools such as the “palm grip orbital
sander” produce significant accelerations up to 150 Hz. However, to include potential
variations in vibrational behaviour and ensure complete modelling of system dynamics,
an overestimation up to 200 Hz was considered.
In the following list, we summarize the frequency-weighted arms accelerations for a
common sander tool:

• Tool: Palm Grip Orbital

• Frequency: 150 Hz
• Acceleration RMS along X: 25.4 m/s2

• Acceleration RMS along Y: 30.3 m/s2

• Acceleration RMS along Z: 45.6 m/s2
Frequency-weighted accelerations, expressed in m/s2, were used to calculate the forces
applied on the robot end-effector through the relationship 𝐹 = 𝑚𝑎, where 𝑚 represents
the combined mass of the end-effector and the grinder.

29

D4.1 HUMAN-ROBOT INTERFACES AND
INTELLIGENCE

3.6.3 NORMAL FORCE

The normal force 𝐹# represents the reaction of the surface to contact with the grinder. It
is modelled by combining an elastic and a viscous component:

𝐹# = 𝐾(∆𝑧) + 𝐶𝑣
where:

• 𝐾 is the elastic constant (stiffness) of the surface.
• ∆𝑧 is the deformation of the surface along the z axis due to contact.

• 𝐶 is the viscous damping coefficient.

• 𝑣 is the relative velocity along the z axis.

3.6.4 TANGENTIAL FRICTIONAL FRICTION FORCE (FRICTION)

The tangential friction force 𝐹$ is a force acting along the plane tangent to the contact
surface. It depends on the normal force and the relative tangential velocity of the grinder
on the surface. The tangential friction force is modelled as:

𝐹$ = −𝑘%	𝐹# 	
𝑣&
‖𝑣&‖

where:
• 𝑘% is a constant describing the relationship between the normal force and the

tangential friction force.

• 𝐹# is the normal force calculated as described above.

• 𝑣& = (𝑣' , 𝑣() is the tangential relative velocity vector between the grinder and the
surface.

• ‖𝑣&‖ is the norm of the tangential velocity.
The negative sign indicates that the friction force is always opposite to the direction of
the grinder's tangential motion.

3.6.5 SIMULATION SETUP

Simulations were carried out using Python and the Adam library (Automatic
Differentiation for Rigid-Body-Dynamics AlgorithMs). Adam was chosen for its ability to
efficiently compute robot dynamics, using automatic differentiation to generate
gradients, Jacobians, and Hessians of dynamic quantities. These derivatives were not
necessary for carrying out these simulations, but they could come in handy for the co-
design of the robot-grinder hardware interface. All simulations were based on the
Doosan h2515 robot model.
The PD controller was implemented with a time step of 1 ms, which allowed the control
actions to be updated with a high frequency. The simulation was instead performed with
a smaller time step of 1/16 ms, to ensure accurate modelling of the system dynamics and

30

D4.1 HUMAN-ROBOT INTERFACES AND
INTELLIGENCE

minimize numerical integration errors.
To model the contact between the end-effector and the surface, we considered a
stiffness of the surface 𝐾 = 3 ∙ 10) N/m, typical for a standard car chassis. The damping
coefficient 𝐶 was set equal to the square root of 𝐾.
The reference trajectory for the end-effector is a sine wave with varying amplitudes,
designed to test the robot's ability to follow smooth motions.

3.6.6 COMPARISON OF ACCURACY OF INTEGRATION METHODS

In this section, we analyse the accuracy of fourth-order Runge-Kutta (RK4) and Euler
numerical integration methods, when controlling the robot with an Operational Space
Control (OSC) method. The goal was to determine how the accuracy of the simulation
varies with the choice of integration method and time step, with the latter being varied
from 1/32 ms up to 1 ms, doubling the value at each iteration. The accuracy of each test
was measured as the difference between the trajectory calculated with a certain time
step and the ideal trajectory, obtained with the lowest time step (1/64 ms). This difference
is expressed in terms of the infinity norm of the error between the two trajectories.

Figure 7: Integration error as a function of integration time step for the Euler and RK4 numerical integration methods.

Our results, depicted in Figure 7, show that when using the typical integration time step
of 1 ms, the resulting integration error is about 1 for Euler and 0.3 for RK4. These errors
are both too large for considering the simulation results reliable. The plot shows that to
get to a simulation error below 0.01, which we could consider low enough for our
purposes of co-design, we should use an integration step of 1/16 ms with RK4, and lower
than 1/32 ms with Euler. However, these integration steps are both extremely small,
which means that the resulting simulations would be extremely computationally

31

D4.1 HUMAN-ROBOT INTERFACES AND
INTELLIGENCE

demanding. Moreover, in these simulations we have not considered the hardware
interface between the grinder and the end-effector, which could make things even
worse. For this reason, we believe that it would be better to investigate the use of more
advanced integration techniques, that could provide better accuracy with lower
computation times, such as exponential integrators.

4 PLANNING AND SCHEDULING

4.1 INTRODUCTION

The objective of this activity is to develop planning solutions to allow the robot to execute
its tasks with a sufficient level of performance and within adequate safety margins.
The objectives of the activity are best understood if we refer to the figures that describe
the overall architecture of the system.

Figure 8: The conceptual architecture of the cleaning robot.

In Figure 8, we have reported the conceptual architecture describing the Cleaning
Robot. The task scheduling component (TS) receives a list of defects that need to be
reworked. These defects are classified by severity, type and location. The TS decides a
sequence of defects to treat considering: 1. The type of cleaning policy that needs to be
applied, 2. The degree of severity and hence the importance of each defect, 3. The
constraint on time. The decision is implemented by a motion planner that decides the
best trajectory between two adjacent tasks in the sequence. The motion planning is
human-aware since it is connected to an environment monitoring system. Whenever a
human is detected in the workspace of the robot, her/his motion is predicted using the

32

D4.1 HUMAN-ROBOT INTERFACES AND
INTELLIGENCE

techniques discussed in D4.1 and the motion plan is adjusted to minimise the risk of
collision or accidents.
The architecture of the sensing robot is shown in Figure 9.
In this case the task scheduling component must generate a trajectory that visits and
identifies the defects. The area where the defects are most likely to be found can be
guessed using the statistical data coming from previous execution. Indeed, a defect is
with a good probability the result of a systematic problem that is created by common
causes (e.g., two electrodes have not been re-dressed recently and generate a
substantial number of sparks during the welding process). However, the task scheduler
must combine the visit of areas where defects have been found in the past with the
exploration of new areas (things could change over time).

Figure 9: The logical architecture of the sensing robot.

The workings of the human-aware motion planner are essentially the same as for the
CR. To summarise, the project requires the development of two algorithms for task
scheduling that support the different phases of the project, and of a human aware
motion planner.

4.2 STATE OF THE ART

The state of the art in task scheduling and in human aware motion planning is quite rich.
Broadly speaking, a robot planning algorithm is used to decide a sequence of actions
that accomplish a task. The simplest type of robot planning is called motion planning,

33

D4.1 HUMAN-ROBOT INTERFACES AND
INTELLIGENCE

and its purpose is to find a sequence of elementary motion that enable the robot to move
from a point A to a point B. This task can be far from trivial for the presence of possible
occlusions and for the possible occurrence of self-collisions (i.e., the robot’s linking
colliding with each other).
The motion planning problem was formulated in the late seventies of the past century
[Lozano79] as a search through the robot configuration space. A larger number of papers
(see [Lav06]) have attacked this problem from several directions. Some of the most
popular approaches fall in the class of sampling-based approaches [Kav96, Lav01], or in
iterative optimisation [Rat09, Sch14].
Collision-free motion planning is certainly important, but not sufficient to enable the
robot’s operation in a complex space. Indeed, a robot is not simply supposed to operate
in the environment, but also to operate changes. This simple fact requires a behaviour
that is no longer modelled as continuous in time. Depending on the topology of the
underlying space and on the state of the objects that are immersed in it, the robot may
have to perform different actions to achieve the same tasks. In the terms of Alami et al.
[Al90], Branicky et al. [Bra02], and Hauser et al. [Ha10], robot planning has an inherently
multimodal structure. In simpler terms, robot planning is “best viewed as a hybrid
discrete–continuous search problem that involves selecting a finite sequence of discrete
mode types (e.g., which objects to pick and place), continuous mode parameters (such
as the poses and grasps of the movable objects), and continuous motion paths within
each mode to a configuration that is in the intersection with the subsequent mode”
[Gar21].
 In the AI community, the planning problem has been modelled as finding the best
sequence of discrete actions that move a transition system into a final desired state
[Gh16]. Let us consider a system with:

• A state space 𝑋,

• An initial state 𝑥*
• A final desired state	𝑥+
• An action space 𝑈(𝑥), which contains all the actions that are active at state 𝑥

• A transition function 𝑥, = 𝑓(𝑥, 𝑢)), which specifies the new state 𝑥,, starting from a
state 𝑥, and applying the action 𝑢

The planning problem is about finding a sequence of input that guarantees to move
the system from the state 𝑥* into 𝑥+ . A more sophisticated version can also require
that the solution is optimal in some sense (e.g., time employed, energy spent, etc.). A
robot planning problem is translated into a discrete system by means of factoring
techniques. The typical approach is to create a graph-based representation, in which
nodes represent possible states of the system, and transitions are associated with
robot actions. Once a problem is formulated in discrete terms, we can solve the
problem using classic graph search algorithms. However, given the huge dimension
of the typical state-space, finding a solution within an acceptable time requires very
effective heuristics [Bo01, Ho01].

34

D4.1 HUMAN-ROBOT INTERFACES AND
INTELLIGENCE

The problem of motion planning and task planning can be approached using a joint
optimisation approach that takes decisions both on the discrete variables and on the
continuous variables [Tou15]. Although an interesting development, this type of
approach falls outside the scope of the project’s activities.
The activities that we will develop in MAGICIAN have important connection with the
following areas:

• Selecting a number of cleaning tasks to execute within a time budget. As
discussed later, this problem can be cast into the framework of orienteering
problems [Gun16]

• Selecting a trajectory for the sensing robot that covers an area visiting the area
where the defects are more likely to be found. This problem can be addressed
within the framework of ergodic control [Dong23]

• Human aware motion planning: the problem is finding a trajectory for the
robot that does not compromise the safety and the psychological well-being
of the person. This step requires integrating human motion prediction see
(D3.1) within a motion planner. In the literature, we find model-based
approaches [Ole24] and other approaches that exploit neural networks
[Wan24]. In the section below we will discuss our specific solution.

4.3 PLANNING AND WORK SCHEDULING FOR THE CR

As apparent from Figure 8, the Task Scheduling component receives as its input a set of
locations 𝐶 = {𝐶-, … , 𝐶#./}on the car body where defects are likely to be found. Each
location is associated with the following parameters:

35

D4.1 HUMAN-ROBOT INTERFACES AND
INTELLIGENCE

Figure 10: Planning pipeline for MAGICIAN "classic approach".

• A position in the workspace of the robot; this position is a “standard position” for
the robot to commence the cleaning operations. For instance, the robot end-
effector is required to be at a given distance from the surface (e.g., 10cm) and with
a pose orthogonal to the surface;

• A reward 𝑆0 associated with the possible removal of the defect; this parameter
includes a component related to the degree of severity of the defect and a
component related to the importance (which is a function of its position);

• A probability 𝜋0 that the defect is actually present; our SR cannot guarantee 100%
accuracy, and the presence of the defect can be associated with a measure of
confidence;

• A processing time 𝜏0 required to remove the defect; this time is estimated based
on the severity of the defect and on its location within the robot’s workspace.

Very importantly, we have a maximum time 𝑇1 to complete the exploration (dictated by
the so-called Takt time). At the moment of the writing, we have set-up a procedure
which follows a quite standard decomposition between motion and task planning,
which is illustrated in Figure 10.

4.3.1 ROADMAP CREATION

The first step is finding a roadmap, i.e., a graph-based representation joining the
different locations. This step can be performed using standard planning algorithm to
connect the points pairwise. We are experimenting sampling-based methods such as
RRT [Kuf00], RRT* [Kar11] and optimisation-based solution such as CHOMP [Rat09] and

36

D4.1 HUMAN-ROBOT INTERFACES AND
INTELLIGENCE

model predictive control [Ole24, Sle21]. The construction of a roadmap amounts to the
creation of a graph in which:

• The nodes correspond to the locations 𝐶 = {𝐶-, … , 𝐶#./}
• The arcs correspond to the pairwise motion between two nodes, with each arc

having a travel cost 𝜏02 . This time is evaluated by a point-to-point motion planner.
We remind that nodes are associated with an additional working time 𝜏0 .

Ideally, the graph is completely connected, but in practice a node could be unreachable
from another time within a maximum time. In this case, some of the transitions could be
missing.
Once the robot arm has reached the operation area associated with each location, the
robot starts executing dynamic motion primitives [Sav23] to remove the defect. Such
primitives are the result of a dynamic equation of the form:

where 𝑦 is the desired position (e.g., of the end-effector), 𝑧 is associated with velocity 𝑓(𝑥)
is a forcing term and 𝑥 is an auxiliary variable, which vanishes with exponential rate and
is used to modulate in time the forcing action. The latter is expressed as a combination
of Gaussian kernels:

Each kernel starts its forcing action a modulated time 𝑐0 and has a duration determined
by ℎ0 . In essence a dynamic motion primitive generates a damped oscillation with a
forcing term given by a sum of Gaussian Kernel. DMPs can be used to imitate human
operations and their parameters can be learned by observing the human (imitation
learning). This aspect is analysed in depth in D3.1.

4.3.2 LOCATION SELECTION AND SCHEDULING

The location selection and scheduling problem is a typical problem of graph
optimisation. One of the best-known problems of this kind is the so-called Traveling
Salesman Problem (TSP) [Jun95], in which an agent is required to visit a set of nodes.
The nodes are connected by arcs associated with a temporal cost. The TSP amounts to
finding a sequence of nodes that the agent should visit so that all the nodes are
eventually visited (1) and the total travel time is minimised (2).

37

D4.1 HUMAN-ROBOT INTERFACES AND
INTELLIGENCE

The TSP has been shown to be strongly NP-hard, meaning that no pseudo-polynomial
algorithm exists to solve it. However, a large literature has identified many efficient
heuristics to produce good sub-optimal solutions. The TSP is widely applicable in fields
such as logistics and manufacturing, where minimizing travel costs and times is crucial.
In our case, the problem takes a different form because of the maximum time budget
constraint. This modified problem is known as the Orienteering Problem (OP) and is
defined as follows [Gol87]. Consider a set of nodes connected by a graph, each one
associated with a reward that is earned if the node is visited. Suppose an agent starts its
travel at a first node (1) and finishes at a final destination node (n). The problem amounts
to finding a selection and a sequence of nodes so that the total travel time remains below
𝑇1 (1) and the total reward is maximised (2).
The OP is essentially a combination of the TSP and the knapsack problem, where the
focus is on selecting a subset of nodes that maximizes the overall profit or reward within
the given time constraint [Kant et al., 2022]. Unlike the TSP, the OP allows for flexibility,
as not all nodes need to be visited. This makes the OP more suitable for scenarios like
ours, where only certain nodes need to be visited based on priority and within a time
budget.
The problem can be modelled as an Integer Linear Programming (ILP) problem or solved
using heuristic solutions. When the number of nodes is reasonably small, like in our case,
the solution time is very low even for a full ILP formulation [Archetti et al., 2007].

4.3.2.1 MATHEMATICAL FORMULATION OF THE ORIENTEERING
PROBLEM

Consider a complete graph 𝐻 = (𝐴, 𝐵), where 𝐴	 = 	 {1, 2, 3, … , 𝑛}		represents the set of nodes
(defects) and 𝐵 represents the edges (paths between defects). Let node 1 and node
𝑛	represent the start and end depots, respectively. The profit associated with cleaning
defect 𝑥 is ϕ' , and ψ'(is 1 if the edge between node 𝑥 and node 𝑦 is selected; otherwise,
it is 0. The ordinal position of node 𝑖 is u0 and the travel time between nodes 𝑥 and 𝑦 is
𝑇'(. The time required to fix defect 𝑖 is 𝑡0 .

The Integer Linear Programming (ILP) formulation for this OP can be described as
follows [Kan22]:
Objective Function
Maximize the total profit of selected nodes:

Maximize^^ϕ'ψ'(

#

(34

#./

'34

Constraints
1. Ensure the route starts and ends at the given depots:

38

D4.1 HUMAN-ROBOT INTERFACES AND
INTELLIGENCE

^ψ/'

#

'34

= 1	

^ψ'#

#./

'3/

= 1	

2. Ensure each node is visited at most once:

^ψ'5

#./

'3/

= ^ψ5(

#

(34

≤ 1	 ∀𝑘 = 2,… , 𝑛 − 1

3. Ensure the total travel time does not exceed the time budget 𝑇Max:

^^𝑇'(ψ'(

#

(34

#./

'3/

+^ 𝑡0^ψ02

#

(3/

#./

'34

≤ 𝑇Max

4. Sub-tour elimination constraints:

2 ≤ 𝑢' ≤ 𝑛	 ∀𝑥 = 2,… , 𝑛	
𝑢' − 𝑢(+ 1 ≤ (𝑛 − 1)a1 − ψ'(b	 ∀𝑥 ≠ 𝑦, ∀𝑥, 𝑦 = 2,… , 𝑛	

5. Ensure binary decision variables:

ψ'(∈ {0,1}	 ∀𝑥, 𝑦 = 1,… , 𝑛

In this formulation, constraints ensure the route starts and ends at the designated
depots, no node is visited more than once, the total travel time is within the allowable
budget, and sub-tours are eliminated. The objective function aims to maximize the profit
associated with the visited nodes, reflecting the prioritization of defects. This approach
aligns well with the problem requirements, allowing the cleaning robot to focus on the
most critical defects within the given time constraint.

4.3.3 INPUT PARAMETERS AND DATA TRANSFORMATION

The formulated orienteering problem requires a set of input parameters which need to
be derived from the output of the sensing robot and the robotic movement data. The
input required by the model is as follows:

• Time Constraint (𝑇Max)
• Travel Times Matrix (𝑇'()
• Estimated Cleaning Times (𝑡0)
• Profit for Cleaning Defect (ϕ0)

39

D4.1 HUMAN-ROBOT INTERFACES AND
INTELLIGENCE

While the time constraint is a constant, the other inputs have to be derived by three
different modules, as visualized in Figure 11.

4.3.3.1 TRAVEL TIMES MATRIX

To create the travel times matrix (𝑇'(), as visualized in Figure 11 as the “Distance Matrix
Calculator”, we need to follow these detailed steps:
1. Collect Defect Locations: Gather the coordinates of each defect identified by the
sensing robot. The locations should be in the form of a list of
tuples, ([(𝑥/, 𝑦/), (𝑥4, 𝑦4), … , (𝑥#, 𝑦#)]).
2. Calculate Euclidean Distances: Compute the Euclidean distance between each pair
of defects using the formula:

					𝑑'(=	ija𝑥(−	𝑥'b
4 +	a𝑦(−	𝑦'b

4k	

			 This will give you a distance matrix 𝐷 where each entry 𝐷'(represents the distance
between defect 𝑥 and defect 𝑦.
3. Convert Distances to Travel Times: Transform the distance matrix into a travel time
matrix by applying a conversion factor based on the robot's speed. If the robot's speed is
𝑣 (distance per unit time), the travel time 𝑇'(can be calculated as:

						𝑇'(=
𝐷'(
𝑣
	

The resulting travel time matrix 𝑇 will contain the time required for the robot to travel
between each pair of defects.

40

D4.1 HUMAN-ROBOT INTERFACES AND
INTELLIGENCE

Figure 11: Path Optimizer Framework.

4.3.3.2 PROFIT BASED ON PRIORITIES

The next step is to calculate the importance of cleaning each defect in terms of profit,
visualized as “Defect Importance Calculator” in Figure 11. To determine the profit ϕ0 	for
cleaning each defect, follow these steps:
1. Identify Defect Types and Severities: From the sensing robot's output, obtain the type
and severity of each defect. These should be formatted as lists, [𝑡𝑦𝑝𝑒/, 𝑡𝑦𝑝𝑒4, … , 𝑡𝑦𝑝𝑒#] and
[𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦/, 𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦4, … , 𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦#] respectively.
2. Define Priority Formula: Develop a formula to calculate the priority of cleaning each
defect based on its type and severity. For example, a simple weighted sum could be
used:

			𝜙0 = 	𝛼 ⋅ 𝑡𝑦𝑝𝑒0 + 	𝛽 ⋅ 𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦0
where 𝛼	and 𝛽	are weights that reflect the relative importance of defect type and
severity.

4.3.3.3 ESTIMATED CLEANING TIMES

Lastly, to estimate the cleaning times (𝑡0) for each defect for the “Cleaning Times
Calculator” in Figure 11, use the following procedure:
1. Obtain Cleaning Time Data: Based on historical data or expert input, determine the

41

D4.1 HUMAN-ROBOT INTERFACES AND
INTELLIGENCE

average time required to fix defects of different types and severities. This information can
be compiled into a reference table.
2. Calculate Individual Cleaning Times: Using the defect type and severity data, lookup
or calculate the estimated cleaning time for each defect. This could be done using a
predefined function or lookup table. For example:

			(𝑡0) = 	𝑓(𝑡𝑦𝑝𝑒0 , 𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦0)	
where 𝑓 is a function or table that returns the cleaning time based on the defect's type
and severity.
3. Format the Cleaning Times: Compile the estimated cleaning times into a list
[𝑡/, 𝑡4, … , 𝑡#], ensuring that all times are in a consistent unit (e.g., seconds or minutes).
By following these steps, you can transform the raw data from the sensing robot into the
required input parameters for the orienteering problem model. This structured
approach ensures the inputs are accurate and formatted correctly for effective
optimization.

4.3.4 SOLUTION APPROACHES

We have implemented the algorithm in the context of MAGICIAN and are now in the
process of testing and benchmarking. We are also considering a stochastic
generalization of the problem to account for the probability of a false positive, which
makes the reward a stochastic variable [Gun16]. Given the critical importance of fast
computation in real-time applications, especially in robotic systems, we need to explore
methods that balance speed and solution quality effectively.
In this context, exact optimization methods such as those offered by solvers like Gurobi
and SCIP (commonly used for solving orienteering problems) are known for their
precision in solving Integer Linear Programming (ILP) problems. However, while these
methods can guarantee an optimal solution, their high computational requirements
make them less practical for real-time applications where solutions must be computed
in seconds.
To meet the real-time demands of systems like MAGICIAN, we are also considering
heuristic methods, which prioritize speed and simplicity. Techniques such as nearest
neighbour, greedy algorithms, or local search generate approximate solutions more
rapidly. Although these methods may not always yield the optimal solution, they are
more suitable for real-time decision-making due to their ability to produce sufficiently
good solutions within stringent time constraints.
Additionally, genetic algorithms (GAs) and other evolutionary algorithms (EAs) present
a promising alternative. These algorithms, inspired by natural evolution, excel at
exploring large solution spaces and often find near-optimal solutions within reasonable
time limits. Their parallel nature makes them particularly attractive for rapid
computation in real-time applications.
Given the need for both speed and solution quality, we are exploring a hybrid approach

42

D4.1 HUMAN-ROBOT INTERFACES AND
INTELLIGENCE

that combines heuristic methods with evolutionary algorithms. This approach leverages
the speed of heuristics and the robust solution quality of genetic algorithms, allowing us
to achieve quick and reliable results within the stringent time constraints of our system.
By integrating these strategies, we aim to optimize the cleaning robot’s path while
ensuring efficiency and responsiveness in real-time applications.

4.3.4.1 MODEL EXTENSIONS

The problem lends itself to useful generalisations. A first useful generalisation is the so-
called Team Orienteering Problem (TOP) [Ar07], in which several paths are synthesized
in parallel and executed by different agents. In this scenario, the reward is earned only
during the first visit to a node, incentivizing the algorithm to find non-intersecting paths.
This is particularly relevant for our work with multiple robotic manipulators operating
simultaneously. When robotic arms are involved, we must also account for the possibility
of collisions. This can be mitigated by either imposing a separation of the time windows
during which transitions in potential conflict occur or partitioning the graph to minimize
intersections, assigning each subgraph statically to a single agent.
Multi-Agent Systems represent one of the most important extensions of this problem.
By incorporating multiple robotic agents (e.g., cleaning robots or manipulators), the
system can execute parallel processes, significantly improving efficiency and reducing
overall completion times. This extension aligns with the Team Orienteering Problem, as
it allows for the optimization of multiple paths for multiple agents, ensuring an optimal
distribution of tasks while preventing collisions. Collision avoidance can be achieved
through dynamic coordination, further enhancing the performance of the system.
Additional model extensions can further improve the problem’s applicability to more
complex, real-world scenarios:

• Confidence Intervals for Sensing Outputs: By integrating uncertainty into the
model, particularly regarding the reliability of defect identification, we can better
prioritize tasks. This approach would involve adding confidence intervals for
sensing outputs to ensure that tasks are selected based on the most reliable data.

• Variable Cleaning or Repair Times: Instead of assuming a fixed time to repair or
clean each defect, the model could be extended to allow for variable times. This
would enable a cost-benefit analysis, helping the system decide how long to stay
at a defect based on its severity and the expected improvement in repair quality.

• Dynamic Learning Mechanisms: Over time, the model could incorporate learning
mechanisms, adapting based on real-time feedback regarding travel speeds,
cleaning times, or repair success. Machine learning techniques could further
refine route planning and task prioritization, enabling the system to evolve with
changing conditions.

• 3D Distance Calculations: Currently, the model assumes that defects are mapped
on a 2D plane. However, if actual 3D distances better reflect travel times,
incorporating these calculations into the model could improve accuracy.

43

D4.1 HUMAN-ROBOT INTERFACES AND
INTELLIGENCE

• Stochastic Extensions: The problem can also incorporate stochastic elements,
such as probabilistic travel times or uncertain repair outcomes. This would align
the model with the Stochastic Orienteering Problem (St-OP), which is valuable for
managing uncertainty and maximizing expected profit.

Moreover, variations like the Clustered Orienteering Problem (COP), where defects are
grouped into clusters, could also simplify the problem, allowing the system to focus on
clusters of defects rather than individual ones, as suggested by Kant et al. (2022).
By implementing these extensions, including the Team Orienteering Problem
framework and multi-agent coordination, we can significantly improve both the
efficiency and accuracy of the system while ensuring that operations such as robotic
cleaning or manipulation are carried out optimally in real-world, complex environments.

4.4 MOTION PLANNING MODULE

As clear from Figure 10 and from the discussion above the execution of the primitives
that move the robot between two locations and, to a lesser extent, of the DMPs adopted
for defect removal, have to consider the possible presence of humans because the
working environment is promiscuous.
Our approach relies on the presence of a module that predicts the motion of the human
for the next 1.5/2 s. If a possible accident is foreseen, the approach modifies the trajectory
choices to mitigate the problem.
We are currently considering two different approaches:

• Roadmap manipulation

• Replanning.
At the time of this writing, we are still in the stage of evaluating different approaches to
find the most suitable to our application. In the write-up below we report the main
techniques that we are considering.

4.4.1 ROADMAP MANIPULATION

The starting point is a roadmap, which can be built joining the locations as discussed
above. We can enrich the roadmap with other “transition points” with the sole purpose
of facilitating the motion between two different locations.
The presence of a human and her/his predicted motion makes some of the arcs
temporarily unusable because of the possible collisions. We can deal with this problem
by adapting the orienteering problem to operate with time varying constraints and time
windows.
The idea is that the travel time of an arc 𝜏02 depends on the time in which the arc is
travelled [Ver14] and each node can be visited within a time frame [Ver13].
This approach can be set-up as an Integer Linear Program, but very efficient heuristics
have been proposed in the literature. The most demanding activity is the query to decide

44

D4.1 HUMAN-ROBOT INTERFACES AND
INTELLIGENCE

when an arc is potentially interested by a collision. We can take this decision in a “lazy”
way, i.e., while the exploration is being made [Boh01]. We are currently trying to adapt
the algorithm in [Ver13] to this modality.
A different approach is based on the technique shown in [Hu22]. The idea is that the PRM
is extended with temporal information. The idea is that we start from a PRM and then,
based on the presence of moving obstacles, we decide a time interval in which each
node is available. Then, during the query phase, we apply a variant of the A* algorithm
with time-varying costs.

4.4.2 REPLANNING

In this case, we assume that the detection of human motion takes place after trajectory
connecting two points has been decided. In this case, we can apply directly state-of-the-
art model based [Ole24] or neural based [Wan24] approaches to design the trajectory
that joins the two points avoiding accidents.
Another possibility is to use an approach similar to that in [Jai04]. We create our PRM
using only the static information. Then, while we explore the graph, we can make a lazy
evaluation of possible collisions. When we find one, we can try to reconstruct a different
strategy connecting the point before and the point after the collision by using RRT.
Finally, we are looking at reactive versions of RRT and RRT*, which can be found
respectively in [Cef19] and [Ot16]. In this case the trajectory is changed using very efficient
solutions to account for the presence of obstacles. The reactive behaviour is easy to
implement but cannot take advantage of the prediction of the human motion, and the
result has potentially a lower performance. Indeed, the robot is forced to move slowly to
avoid a possible collision that can occur at any time, while exploiting the prediction
allows for an anticipatory behaviour and move along trajectories that are reasonably
collision-free.

4.5 PLANNING AND SCHEDULING FOR THE SR

As regards the scheduling activities for the SR, we are in the typical case for which we
need a correct balance between exploitation and exploration. On the one hand, we
seek the defects in the area where they are most likely to be found based on the
historical data (exploitation), on the other we need to explore the car-body in search of
new areas where defects could be found (e.g., due to changes in the condition of the
production phases preceding the analysis).
The two phases have to be properly orchestrated. Indeed, given the fixed amount of time
available, the exploitation phase will have to account for the following facts.

1. The visual inspection has to be concentrated in the areas where, based in the
historical data, the defects are most likely to be found. In addition, defects should
receive a larger priority according to the area where they are;

2. The tactile inspection has to be concentrated in areas that are not easily reachable

45

D4.1 HUMAN-ROBOT INTERFACES AND
INTELLIGENCE

by the camera (e.g., the area underneath the doors or on their side);
3. Some slack time has to be reserved for tactile inspection for defects that are

classified as uncertain during visual inspection.
The exploration phase should be very efficient in discovering potentially new areas with
defects and at avoiding areas that have been carefully analysed during the exploitation
phase.
In our first development run, we have decided to statically partition the duration of the
two phases and use specific solutions for each of them. In the future we plan to explore
a more dynamic interaction between the two phases.

4.5.1.1 EXPLOITATION

For the exploitation phase, a possibility is to use again a variation of the orienteering
methods described above. Based on the previous history, the system can identify a
number of locations associated with a high level of criticality and with a probability that
a defect will materialise.
We can again construct a roadmap joining all the different locations distinguishing
between fly-over phases, in which we move very quickly between two areas, and
inspection phases, where we inspect the area remaining at a fixed distance from the car-
body. The framework is very similar to the one that we have described for defect removal.
The only remarkable difference is that for the inspection phase we can utilize two types
of sensors (visual and tactile). The implications are illustrated below.

4.5.1.2 INTEGRATING DIFFERENT SENSORS IN SR OPERATION
SCHEDULING

Let 𝐷 be a defect at a given location and let V denote the simple use of the visual sensor,
and T denote the use of the tactile sensor. Suppose we know, from the previous runs, a
good estimate of the probability 𝑃(𝐷) = 𝐿 that a defect will appear in that location. If we
know

• the accuracy and the probability of a false positive for the visual sensor 𝑃(𝑉|𝐷) = 𝑀
and 𝑃a𝑉x𝐷b = 𝑚,

• the accuracy of the tactile sensor 𝑃(𝑇|𝐷) = 𝑁 and the probability of a false positive
𝑃a𝑇x𝐷b = 𝑛,

• assuming that the two readings are independent,
we can estimate the probability that the defect will appear to each sensor or to their
combined use by respectively using one of the following equations:

𝑃(D|V) =
𝑃(𝑉|𝐷)𝑃(𝐷)

𝑃(𝑉|𝐷)𝑃(𝐷) + 𝑃a𝑉x𝐷b𝑃a𝐷b
=

𝑀𝐿
𝑀𝐿 + (1 − 𝐿)𝑚

46

D4.1 HUMAN-ROBOT INTERFACES AND
INTELLIGENCE

𝑃(D|T) =
𝑃(𝑇|𝐷)𝑃(𝐷)

𝑃(𝑇|𝐷)𝑃(𝐷) + 𝑃a𝑇x𝐷b𝑃a𝐷b
=

𝑁𝐿
𝑁𝐿 + 𝑛(1 − 𝐿)

𝑃(D	|T	V) =
𝑃(𝑉|𝐷)𝑃(𝑇|𝐷)𝑃(𝐷)

𝑃(𝑉|𝐷)𝑃(𝑇|𝐷)𝑃(𝐷) + 𝑃a𝑉x𝐷b𝑃a𝑇x𝐷b𝑃a𝐷b
=

𝑁𝑀𝐿
𝑁𝑀𝐿 + 𝑛𝑚(1 − 𝐿)

It is easy to see that the combined use of the tactile sensor combined with the visual
sensor gives advantages over the latter only if 𝑁	 ≥ 𝑛. As an example, we plot the ratio
9:𝐷;𝑇𝑉<
9:𝐷;𝑉< as a function of 𝑃a𝑇x𝐷b, for 𝑀 = 0.5,𝑚 = 0.1, 𝑁 = 0.4, 𝐿 = 0.8.

As intuitive, we have convenience in using the second sensor only if its accuracy is
greater that the probability of false negative (see Figure 122). The degree in which this
choice can be convenient depends on the different probabilities and can be estimated
online based on the frequencies of the different events.
Generally speaking, we have convenience in using multiple sensors iff:

𝑃(𝐷|TV) ≤ 𝑃(𝐷|V) ≤ 𝑃(𝐷) ≤ 𝑃(𝐷|𝑉) ≤ 𝑃(𝐷|𝑉𝑇)

It can be shown that this is verified if 𝑃(𝑉|𝐷) ≥ 𝑃a𝑉x𝐷b ∧ 𝑃(𝑇|𝐷) ≥ 𝑃a𝑇x𝐷b. In essence, we are
saying that the presence of a positive answer from each sensor improves the knowledge
on the probability of the presence or of the absence of a defect. The computation shown
above allows us to compute the amount of the improvement.

Figure 12: Ratio of the relation between the probability of using visual + tactile sensor over using only the visual

sensors. The ratio is computed for different values of the false negatives.

Clearly, the processing time and the probability associated with the different locations
depends on this choice. At the beginning of each work cycle, we can compute for each
location the probability that we will identify the defect with the sole use of the visual
sensor. If this probability is lower than a desired threshold, we can opt for the combined
use of vision and tactile sensor. This choice has a direct impact on the choice of the
parameters that are used to set up the orienteering problem.

47

D4.1 HUMAN-ROBOT INTERFACES AND
INTELLIGENCE

4.5.1.2.1 EXPLORATION

As regards the exploration phase, one of the most promising approaches that we are
evaluating is based on computational geometry. In the past years, the UNITN group has
proposed the application of Llyod based methods to many distributed control problems
[Bol22], including rendezvous, dynamic coverage, motion of agents with line-of-sight
preservation constraints. The idea is to decompose the environment into Voronoi cells
and implement a distributed gradient descent method choosing a cost function fitted
to our purposes. For instance, if the desired task is exploration, we can utilise a cost
function that penalises the places that robot visited already. The approach can be used
for a single agent, but it generalises nicely to multi-agent systems without suffering
deadlock or livelock conditions. We are now adapting the idea to the manipulator
setting, where issues like possible interference between the different kinematic
structures take centre stage.

5 MOTION GENERATION AND ACTIVE SENSING

5.1 INTRODUCTION

As we discussed above, once the SR reaches an area of potential interest, it collects
information on the potential presence of defects. We use the term “active sensing” to
denote feedback control strategy that guise the system in order to maximise the
amount of information collected. In some sense, we can consider the feedback control
strategy as a means to generate feedback controlled motion primitives that execute the
sensing task. In this section, we mention the strategies we are putting in place to
implement this idea.

5.2 STATE OF THE ART

Active sensing is the problem of control design for carrying out sensing tasks [Kreu05,
Cai09]. Applications are in a large number, and include object classification/recognition
[Den02, Arb99] and next viewpoint selection [Vaz01].
Generally speaking, we can model an active sensing algorithm as going through four
different phases, Figure 13. Based on the previous information we update our belief state
(e.g., our best guess on where are the defects). The typical way beliefs are created and
updated are through filtering techniques. Kalman filters can be used effectively when
the posterior distribution is known to be Gaussian [Leu06]. In our case, we cannot make
any such assumption. Therefore, we will adopt general Bayesian filtering [Mil15] because
it allows us to consider non-Gaussian Distribution and easily integrate the physical
information on the dynamics of the robot performing the search.
The step B is to evaluate the information that can be collected given our sensing state
and our state belief. Given a state, the possible ways to evaluate the utility of a

48

D4.1 HUMAN-ROBOT INTERFACES AND
INTELLIGENCE

measurement can be different. Very informative is for our case the Fisher information
matrix, which quantifies the ability of a random variable associated with a measurement
to estimate an unknown parameter [Em98]. In some sense, the fisher information
predicts where the derivative of the expected signal to the variance of the noise is high
producing more salient data.
 The next step is to decide a control action that drives robot trajectories following the
distribution maps. Following [Mil15], we will apply ergodic control as described in the
next section.

Figure 13: Typical phases of information Based sensing algorithm (courtesy [Mil15])

5.3 ERGODIC CONTROL

In addition to the “classic” approaches described earlier, we are approaching the
problem of defect search adopting an active sensing paradigm based on ergodic control
[Mil15]. By using this the exploration and exploitation phases are strongly harmonised.
Ergodic control is a technique that determines a motion policy for a robot such that
statistics given by a prior distribution and the spatial statistics averaged through time
converge.

49

D4.1 HUMAN-ROBOT INTERFACES AND
INTELLIGENCE

Figure 14: Example of ergodic control (a) as opposed to information maximisation (b). [Courtesy [Mil15])

It is telling to look at example in Figure 14. In the bottom part, we see that the trajectory
seeks the points with the maximum information, whilst in the top part (ergodic control)
the objective is to fill the space according to the prior distribution. In our case the prior
distribution is given by the historical probability of finding defects.
Given our search domain 𝑋

C(x) =
1
T
� δa𝑥 − 𝑥(𝑡)b𝑑𝑡
=

-

with 𝛿(.) being the Dirac delta, represents the spatial statistics of the process 𝑥(𝑡). Our
goal is to find a control law to make these statistics converge to the estimated probability
density function EID(x).

If we represent 𝐶(𝑥) by its Fourier coefficients 𝑐5a𝑥(𝑡)b, and EID(x) by its Fourier
coefficients ϕ5 , we can express the deviation of the trajectory x(t) from erogidicity as
[Mat11]

.
The use of the Fourier coefficients makes the distance from ergodicity differentiable in
𝑥(𝑡) allowing us to set up an optimal control problem where the cost function is given

50

D4.1 HUMAN-ROBOT INTERFACES AND
INTELLIGENCE

by:

Classic active sensing solutions, divide the exploration and the exploitation phase
switching between two cost functions. The application of ergodic control allows us to
treat the two phases in the same way. The only differentiation is in the way we collect
measurements. During the exploration phase, we choose our sampling policy to
prioritise coverage, while in the exploitation phase we increase our sampling rate in the
proximity of the hotspots. We report an example from [Mil15]

In the example we show the location of a 2D target. In the top row, the figure shows the
update of the belief state, whilst in the bottom row we show the trajectory computed by
ergodic control. The trajectory allows us to update the information and progressively
refine the pdf EID(x) where the target can be found.
The application of ergodic control is not straightforward: it requires some research efforts
that we are putting in place. For this reason, we will first adopt the more classic approach
based on orienteering and Llyod-based navigation described above.

5.4 MOTION GENERATION MODULE

MAGICIAN control architecture will employ the CartesI/O cartesian control framework
developed at IIT [Laurenzi2019]: it allows the untrained user to perform complex motion
tasks with robotics platforms by leveraging a simple, auto-generated ROS-based
interface.
Contrary to other motion control frameworks (e.g., ROS MoveIt!), CartesI/O focuses on
the execution of Cartesian trajectories that are specified online rather than planned in
advance. Moreover, it addresses the problem of generating such motions within a hard
Real-Time (RT) control loop.
 As highlighted in the picture below, CartesI/O:

• Provides a uniform way to programmatically interact with a Cartesian controller;

51

D4.1 HUMAN-ROBOT INTERFACES AND
INTELLIGENCE

• Automatically generates a complete ROS API for sending references to the
controller;

• Allows the use of the ROS-based API also in the case that the solver is running
inside a real-time thread.

Figure 15: The main components of the software architecture with its motion modules.

5.5 TASK AND HUMAN PRESENCE DRIVEN MOTION/IMPEDANCE
MODULATION PRINCIPLES

An example of what is achievable with CartesI/O motion generation and the XBot
middleware is a Cartesian Impedance modulation principle, as anticipated in Section
3.5. Acting in the task space, the control law formula is now the following:

𝜏  =  𝐽" a𝐾 (𝑥! − 𝑥)  +  𝐷 (𝑥!̇ − �̇�)  +  𝑓%%b

where 𝐾	is the Cartesian stiffness gain, 𝐷	is the Cartesian damping gain, 𝑥 ,  𝑥! are the
actual and the desired Cartesian tool control point pose, respectively, and 𝑓%% an
optional feed-forward force.
Acting in the Cartesian space, it is possible to modulate the manipulator compliance in
specific Cartesian direction, tackling the physical interaction in a more convenient and
flexible way. As an example, for a grinding/polishing task where the manipulator follows
a rigid surface, the stiffness along the normal direction can be lowered, assuring to keep
the contact with the object, while still following with a high precision the desired path in
the other directions. Figure 16 introduces such an example, with a mobile collaborative
robot following a curved surface in a simulated environment (Gazebo). The plugin, being
implemented with the XBot tools, is ready to be used in a real scenario.

52

D4.1 HUMAN-ROBOT INTERFACES AND
INTELLIGENCE

Figure 16: A mobile robot performing a surface following task in the Gazebo simulation.

In general, with the developed modules, the stiffness (and damping) gains can be set
online, depending on the status of the task in execution. Eventually, such parameters
would be set automatically, with techniques of variable impedance modulation, based
on the status of the tasks and on the task requirements [Bertoni2022].

5.5.1 SELF-COLLISIONS AVOIDANCE MODULE

The above-mentioned software framework employed, allowed to easily integrate in the
important modules for the optimization and safety of the robot generated motions. One
such capability of the CartesI/O motion generation module is a self-collision avoidance
system. Implemented as a constraint in the stack of tasks defined, such module takes
into consideration the collision meshes of the robot model (usually simpler shapes that
envelop the real robot meshes). During the robot motion, the module checks online for
eventual collisions among the robot's link and modifies accordingly the trajectories for a
safe robot motion.

6 CONCLUSIONS
The algorithmic methodologies and technological solutions presented in this report
represent the foundation tools considered and are currently under development for the
realization of the robotic system of MAGICIAN.

53

D4.1 HUMAN-ROBOT INTERFACES AND
INTELLIGENCE

The development of these tools is expected to continue in the next period as their
implementation and testing on the MAGICIAN robotic platform will progress. Further
extensions and upgrades in the functionalities of the robotic solution will be performed
based on the outcome of their implementation and validation in the field during the
execution of the defect detection and reworking use case tasks.
The tuning of the control tools will be carried out considering the performance
measured and the requirements imposed by the use case tasks. For example, additional
control methodologies and/or tuning may be necessary to address issues imposed by
the interaction and end-effector intrinsic vibrations.
The physical interaction parameters of the robotic platform such as impedance settings
and contact force regulation for satisfying the necessary task performance will also form
and interesting topic of the follow up activities.
Similarly, adaptation and upgrades on the task planning and scheduling tools will be
guided by the results obtained and observed execution efficiency.
Finally, developments on the interfaces of the different tools will be necessary to
facilitate their integration within the overall software and control framework and the
communication among the different algorithmic and technological components.

54

D4.1 HUMAN-ROBOT INTERFACES AND
INTELLIGENCE

7 REFERENCES
[Chinello2012] Chinello, Francesco, et al. "A three DoFs wearable tactile display for
exploration and manipulation of virtual objects." 2012 IEEE Haptics Symposium
(HAPTICS). IEEE, 2012.

[Pacchierotti2017] Pacchierotti, Claudio, et al. "Wearable haptic systems for the fingertip
and the hand: taxonomy, review, and perspectives." IEEE transactions on haptics 10.4
(2017): 580-600.

[Kappassov2015] Kappassov, Z., Corrales, J. A., & Perdereau, V. (2015). Tactile sensing in
dexterous robot hands. Robotics and Autonomous Systems, 74, 195-220.

[Seminara2019] Seminara, Lucia, et al. "Active haptic perception in robots: a review."
Frontiers in neurorobotics 13 (2019): 467142.

[Pape2012] Pape, L., Oddo, C. M., Controzzi, M., Cipriani, C., Förster, A., Carrozza, M. C., &
Schmidhuber, J. (2012). Learning tactile skills through curious exploration. Frontiers in
neurorobotics, 6, 6.

[Prattichizzo2013] Prattichizzo, D., Chinello, F., Pacchierotti, C., & Malvezzi, M. (2013).
Towards wearability in fingertip haptics: a 3-dof wearable device for cutaneous force
feedback. IEEE Transactions on Haptics, 6(4), 506-516.

[Laurenzi2023] Arturo Laurenzi, Davide Antonucci, Nikos G. Tsagarakis, Luca Muratore,
“The XBot2 real-time middleware for robotics,” Robotics and Autonomous Systems,
Volume 163, 2023, 104379, ISSN 0921-8890, https://doi.org/10.1016/j.robot.2023.104379.

[Muratore2020] L. Muratore, A. Laurenzi, E. Mingo Hoffman and N. G. Tsagarakis, "The
XBot Real-Time Software Framework for Robotics: From the Developer to the User
Perspective," in IEEE Robotics & Automation Magazine, vol. 27, no. 3, pp. 133-143, Sept.
2020, doi: 10.1109/MRA.2020.2979954.

[Laurenzi2019] A. Laurenzi, E. M. Hoffman, L. Muratore and N. G. Tsagarakis, "CartesI/O: A
ROS Based Real-Time Capable Cartesian Control Framework," 2019 International
Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 2019, pp. 591-596,
doi: 10.1109/ICRA.2019.8794464.

https://doi.org/10.1016/j.robot.2023.104379

55

D4.1 HUMAN-ROBOT INTERFACES AND
INTELLIGENCE

[Hogan1985] N. Hogan, “Impedance control: An approach to manipulation: Part I-theory".
Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, 107(1).
https://doi.org/10.1115/1.3140702

[Muratore2023] L. Muratore, A. Laurenzi, A. De Luca, L. Bertoni, D. Torielli, L. Baccelliere, E.
Del Bianco, N. G. Tsagarakis, “A Unified Multimodal Interface for the RELAX High-Payload
Collaborative Robot” Sensors 2023, 23, 7735. https://doi.org/10.3390/s23187735

[Bertoni2022] L. Bertoni, L. Muratore, A. Laurenzi and N. G. Tsagarakis, "Task Driven Online
Impedance Modulation," 2022 IEEE-RAS 21st International Conference on Humanoid
Robots (Humanoids), Ginowan, Japan, 2022, pp. 865-872, doi:
10.1109/Humanoids53995.2022.10000215.

https://doi.org/10.1115/1.3140702
https://doi.org/10.3390/s23187735

