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EXECUTIVE SUMMARY 
This deliverable presents the progress made in the development of the perception 
systems within the MAGICIAN project. It focuses on the detection of imperfections using 
visual and tactile perception modules, human motion detection, and the learning of 
defect detection skills from human operators. The document provides a comprehensive 
overview of the methodologies employed, preliminary results obtained, and the 
challenges and limitations encountered during the development process, setting the 
foundation for future work. 
More specifically, this deliverable offers a detailed description of the perception system's 
components, including their requirements and specifications as defined by the 
industrial partners, and the overall system architecture designed to meet these needs. It 
furnishes a thorough understanding of the operations and methodologies foreseen in 
the subsequent stages of the project, ensuring alignment with the project objectives 
and facilitating improvements in industrial operations. 
The visual perception module is described first, starting with an introduction to the state 
of the art in visual defect detection. It includes the objectives and requirements 
identified in collaboration with partners such as TOFAS and CRF, the design and 
implementation of the camera system, and the data acquisition and annotation 
processes. The methodologies employed involve tailored sensor design and machine 
learning techniques aimed at accurately detecting imperfections in automotive 
components. Preliminary results demonstrate promising capabilities, while challenges 
such as the finalization of the sensor design, the precise control of observation 
conditions, and the acquisition of more training data are discussed to outline areas 
needing further effort. 
Similarly, the tactile perception system for imperfections detection is presented in detail. 
This section introduces the tactile sensors utilized, the data acquisition and annotation 
methods, and the specific methodologies applied for processing recorded data. The 
objectives and requirements are again defined in collaboration with industrial partners 
to ensure relevance and applicability. Preliminary findings highlight the effectiveness of 
tactile sensing in identifying surface defects, with discussions on challenges like data 
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variability, sensor sensitivity, and the need for extensive datasets to train robust models. 
The deliverable also covers human motion detection, emphasizing its importance in 
capturing and interpreting human movements within manufacturing tasks. It reviews 
the state of the art, defines objectives and requirements, and describes the data 
acquisition and annotation strategies. Preliminary results indicate the feasibility of 
accurately modelling human motions, although challenges such as real-time processing 
constraints and occlusions are identified. 
An important aspect of the project is the learning of defect detection skills from humans. 
The relevant section outlines the challenges and objectives of transferring human 
expertise to robotic systems using Dynamic Motion Primitives (DMPs) enhanced with 
Riemannian manifolds. By capturing the complex, nonlinear motion patterns of human 
operators, the system seeks to generalize these skills to various car parts and surfaces. 
Preliminary results indicate promise in mimicking human performance, though 
challenges remain in achieving real-time responsiveness and handling the subtleties of 
human decision-making. 
In the Conclusions, the deliverable outlines the next steps for further development of the 
perception modules. Plans include enhancing the visual and tactile perception systems, 
integrating multi-modal sensing for more robust detection, and exploring active sensing 
strategies to improve efficiency and accuracy. Future work will address the identified 
challenges, refine the methodologies, and focus on validating the systems within real-
world industrial environments. 
The submission of this document (D3.1) is part of Work Package WP3 (Perception System 
Development) and is the outcome of the three Tasks comprising it, Tasks T3.1, T3.2 and 
T3.3, delivered at the end of Month 12 of the project.  
 

DEVIATIONS 
No deviation is foreseen from the planned path.  
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1 INTRODUCTION  
This deliverable provides a comprehensive report of the preliminary state of the 
MAGICIAN sensing modules for data acquisition and skill learning. The main sensing 
modules of the MAGICIAN platform are (a) the visual perception system and (b) the 
tactile perception system for imperfection detection. These two fundamental modules 
involve physical sensors and hardware design and are destined to complement each 
other helping the MAGICIAN robot successfully tackle the defect detection tasks that are 
currently performed by humans but will, in the future, be assigned to the MAGICIAN 
platform. Two more perception modules are (a) the human motion detection module 
and (b) the learning defect detection and learning working skills from humans’ modules. 
These are software-defined and capitalize on recent AI methods to endow the platform 
with the capabilities required to sense humans and their actions. 

1.1 PURPOSE AND SCOPE 

The primary objective of this deliverable is to provide a comprehensive overview of the 
visual and tactile perception systems, which constitute the core technological 
components for defect detection and classification in the MAGICIAN project. These 
systems are designed to facilitate the identification and categorization of manufacturing 
defects, thereby enabling automated reworking processes. This document describes 
how these perception systems are being researched, designed, and implemented 
during the first year of MAGICIAN. 
The visual perception module includes hardware design and computer vision 
techniques to detect and classify defects in car components. The tactile perception 
module employs sensors and data analysis for the detection of surface irregularities and 
other tactile defects that are not easily visible. Overall, the idea behind the selection of 
these two sensing modalities is to complement each other. Besides these two sensing 
modules, this document outlines methods for the visual observation of human operators 
for human-robot collaboration and learning modules that enable robots to acquire 
defect reworking skills from human demonstrations. The deliverable sets the 
groundwork for subsequent iterations and refinements that will lead to a fully 
operational perception system integrated within the manufacturing line. 

1.2 CONTRIBUTION TO PROJECT OBJECTIVES 

The progress reported in this deliverable contributes in several ways to the broader goals 
of MAGICIAN, which span scientific, technological, social sciences, and demonstration 
Objectives. Specifically, the stated Objectives of MAGICIAN are 
 
Scientific and Technological Objectives: 

• O1: A robotic perception module integrating visual and tactile sensors for 
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defects analysis and classification. 

• O2: A robotic cleaning module with a specialised end-effector for defect 
reworking. 

• O3: A software robotic platform integrating services for perception and 
cleaning modules. 

• O4: A closed-loop defect detection and avoidance system for robotic and 
welding processes. 

• O5: Development of two TRL 7 integrated prototypes for defect analysis and 
reworking. 

 
Social Sciences and Humanities (SSH) Objectives 

• O6: A human-centred approach to human-robot collaboration, promoting 
usability, safety, and trustworthiness. 

 
Demonstration Objectives 

• O7: Demonstration of the prototypes in operational scenarios. 

• O8: Expansion of MAGICIAN’s scope and applicability via Financial Support to 
Third Parties (FSTP). 

 
The perception systems detailed in this deliverable form the backbone of the MAGICIAN 
platform’s perception capabilities, enabling accurate defect detection, supporting 
reworking strategies, and facilitating effective human-robot collaboration. These 
systems provide essential data and insights that drive the platform’s core functions, 
aligning with the project’s ambition to enhance automation in defect handling through 
a robust, adaptable, and human-centred approach. 

1.3 RELATION TO OTHER WORK PACKAGES 

The perception components described in the present deliverable are at the heart of most 
of the project’s activities, and they have an understandably strong relation with many of 
its work packages. A synthetic list of the most important relations is offered next. 

• WP2 – Use case definition and platform design:  even if the perception solutions 
developed in the WP claim for a certain level of generality, the initial idea and the 
main design choices are connected to the specific requirements of the 
automotive use case identified as the main driver of the project’s research 
activities. In particular, the unique combination requirements on the perception 
system’s accuracy, on its integration within a robust robotic platform, and on the 
final cost of the solution pose several formidable challenges that we are facing in 
the activities in WP3 and that are succinctly reported in this report. 

• WP4 – Robotic platform and interfaces: WP3 and WP4 are the two main pillars 
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producing the technological assets at the heart of the system components. The 
activities of the two WP are deeply intertwined. Specifically, the planning and 
scheduling components (T4.3) take their decisions based on the results of the 
defect analysis and on the prediction of the possible motion of human operators. 
The motion control and active sensing component make a direct use of the 
Information processed through the perception pipeline. This information is also 
used for T4.5 (closed-loop defect analysis). On the other hand, also the Inverse 
Information flow (from WP4 to WP3) is extremely important. Knowing the 
possible motion performance and strategies of the robot arm where the 
perception system is mounted sets the background for the development of 
perception strategies (e.g., the velocity of the motion and the accuracy of the 
distance between the perception system and the car plays an important role the 
decision of the optical system and of the visual processing pipeline).  

• WP5 - Integration and performance analysis: The components developed in 
WP3 and described in this document will be integrated in the final platform (T5.1). 
Most of them will be part of the demonstrator (T5.2) and their performance will 
contribute substantially to the project's KPIs. 

• WP6 – Cascade funding management: since the perception component will be 
used in the subprojects stemming from the cascade funding scheme, the 
project’s findings will be crucial to offer support and technical assistance (T6.4). 

1.4 STRUCTURE OF THE DOCUMENT 

The document is structured into seven main chapters, addressing key components of 
the perception systems developed for the MAGICIAN project, with the last section 
devoted to the outlook and planning for the future integration of the modules and their 
fusion in a multi-modal system.  
After this introductory Chapter, Chapters 2 and 3 focus on the visual and tactile 
perception systems, respectively, for imperfections detection. Each chapter details the 
introduction, state of the art, objectives, methodologies, and preliminary findings, and 
ends by highlighting the open challenges of these systems. Chapter 4 addresses human 
motion detection, emphasizing its importance for human-robot collaboration. This 
chapter follows a similar structure to the previous ones. 
 Chapter 5 describes the module for learning defect reworking skills from humans, which 
is crucial for enhancing automation in defect management. This chapter also includes 
state-of-the-art reviews, system objectives, methodologies, and findings. Chapter 6 looks 
ahead, outlining plans for further development and integration of the perception 
modules, with a focus on multi-modal fusion and active sensing. The document 
concludes in Chapter 7, summarizing the key outcomes and setting the stage for the 
next steps in the MAGICIAN project. 
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1.5 PERCEPTION SYSTEM OVERVIEW 

1.5.1 REQUIREMENTS AND SPECIFICATIONS 

The sensing components described in this document rely on the needs and 
requirements pointed out during the analysis carried out in the WP2 and reported in the 
D2.1 – “Use Case Definition”, where the identified automotive Use Cases are described, 
constituting the fundamental playground for the ongoing MAGICIAN research and 
activities. As pointed out the Section 1.3, the specifics of these Use Cases lead to 
demanding constraints on the perception system’s features and accuracy, on its 
integration within a robust robotic platform, and on the final cost of the solution. These 
topics will be further explored and discussed in Sections 2.3 of this report, where KPIs 
related to the Visual Perception are pointed out, in Section 3.3, with KPIs related to Tactile 
Perception, in Section 5.3, with KPIs related to the Learning. 

1.5.2 SYSTEM ARCHITECTURE 

The system architecture of the MAGICIAN perception systems is designed with 
modularity and flexibility at its core, utilizing ROS (Robot Operating System) as the 
primary integration framework. This architecture allows for seamless communication 
between various perception modules and supports the development and deployment 
of automated defect detection and classification solutions in car manufacturing lines. 
The architecture comprises key perception modules, including visual defect detection, 
tactile defect detection, and human detection, alongside supporting sensing modalities 
such as human tracking and force sensing for learning defect reworking by 
demonstration. These modules are designed to operate independently yet interconnect 
through ROS wherever required, facilitating data exchange and coordinating actions 
across the system. 
The perception modules are containerized to enhance isolation and modularity, 
leveraging platforms such as Docker or equivalent alternatives that offer simplicity and 
robust isolation capabilities. This containerized approach allows each module to be 
developed, tested, and deployed independently, simplifying integration and 
maintenance while ensuring consistent performance across different environments. 
Although specific hardware and detailed communication protocols are yet to be defined, 
the high-level architectural approach prioritizes scalability and adaptability, enabling the 
system to evolve as new requirements and insights emerge during the project. The initial 
considerations also include basic performance, scalability, and fault tolerance aspects, 
which will be further refined in subsequent development phases. 
As the system development progresses, the architecture will be iteratively updated to 
incorporate more detailed specifications, refined interfaces, and comprehensive 
performance metrics, ensuring alignment with the overall objectives of the MAGICIAN 
project. 



 
 

 
 

18 
 

D3.1 FIRST DELIVERY OF PERCEPTION 
SYSTEMS  

 

2 VISUAL PERCEPTION FOR IMPERFECTIONS 
DETECTION 

The visual perception system for imperfections detection is a critical component for the 
success of the project since vision is a primary sensing modality which factory workers 
utilize for imperfection detection. Mirroring the way humans operate, the scanning 
speed and accuracy of the visual perception module of the MAGICIAN robot directly 
impacts the main Key Performance Indicators (KPIs) of the project and therefore 
significantly influences the project outcome.  
The visit to the industrial plant of TOFAS in January 2024 provided hands on experience 
and gave all technical partners access to the first metal sheet samples with 
imperfections that where crucial to study and understand the requirements of the 
problem. The relevant use cases and considerations were described in Deliverable 2.1 
and, more specifically, in Sections 2.1.3.1.1 and 2.2.3.1.1 of that Deliverable.  
In April 2024, FORTH received a large shipment of annotated defective material (shown 
at the FORTH premises in Figure 2.1) that has been instrumental in forming a prototype 
solution for the visual perception module that will be presented in detail in this section. 
 

 
Figure 2.1. The shipment of defect samples deployed at the dedicated space for the project in the Foundation for 
Research and Technology Hellas (FORTH). 

2.1 INTRODUCTION 

The project use cases described in D2.1 for automotive manufacturing present significant 
challenges. The MAGICIAN system will need to deal with various car chassis, each 
comprising hundreds of uniquely processed metal sheets with diverse shapes, edges 
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and contours. Sensing is required to detect a broad variety of imperfections, namely  
• positive/negative dents,  
• weld spatters,  
• sealing residuals,  
• deformations and  
• material defects,  

each of which uniquely affects the involved surfaces, as illustrated in Figure 2.2. Metal 
sheets feature varying textures from part to part. Often, they exhibit imperfections, such 
as scratches, that may seem like defects to an untrained observer. However, these marks 
generally pose no issues for the manufacturing process, as they are covered without 
problems once paint is applied and should therefore be considered non-defective. 
Nevertheless, true defects are typically small, with the minimum targeted defects being 
around 300 microns in size, and they can occur over large areas of several square meters 
across the car’s surface. 
 

 
Figure 2.2. Annotated defect examples from the shipment of TOFAS to FORTH, of welding spots (top left), material 
deformation and seal residuals (top right), positive / negative dents (bottom row). Defects range in severity, size and 
location. 

As a result, a vision system capable of recording such defects requires exceptional optical 
clarity, with high resolution being crucial to ensure that defects produce a sufficiently 
large and detectable signature on the sensor. However, with increased resolution, more 
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pixels are occupied for the same surface area in the data transfer between the sensor 
and the computer. This increase in pixel data also raises the processing demand, which 
can become a limiting factor for real-time operation. 

 

 
Figure 2.3. After experimentally testing various sensors, we decided to base the camera system on the SONY XCG-CP510 
sensor that can detect light polarization. Coupled with a light source with known polarization, this camera provides 4 
angle readings for each camera pixel at 0°, 45°, 90° and 135°, thus providing a rich source of observations for the neural 
network defect classifier.  

2.2 RELATED WORK AND STATE OF THE ART 

 

 
Figure 2.4. Figure 2.4. Commercial aftermarket tools for dent detection tasks include linen reflective markers with black 
stripes of varying width (Left), or LED based striped lights that can individually be turned on and off with alternating black 
bands (Right). These ”structured-light” techniques are geared towards painted smooth surfaces. By altering the observer’s 
gaze and the pattern reflection on the car body in different angles, dents become more noticeable compared to constant 
ambient light. 

Paintless Dent Repair (PDR) is the aftermarket automotive industry term describing 
detecting and repairing minor dents and imperfections on painted car surfaces. The 
term paintless describes that using tools like plungers and suction cups, without 
repainting the surface, dents can be reworked to become more subtle.  The specialized 
lights used for PDR utilize high-contrast, often striped, LED or fluorescent lighting 
(Figure 2.4) to create reflections on the painted vehicle’s glossy and shiny surface, 
making small dents and deformations more visible to the human eye. The key advantage 
of PDR lights is their ability to accentuate surface irregularities that are otherwise hard 
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to detect under normal lighting conditions. By adjusting the position of the light and the 
angle of observation, aftermarket technicians can more clearly see the depth and extent 
of a dent.  
Unfortunately, detecting dents and imperfections on an unpainted surface is a much 
harder task. The rough texture of raw metal sheets, before applying paint, makes dents 
and imperfections much harder to detect and thus is a much more challenging scenario. 
Regardless of the lack of direct application to our use case, these widely used tools and 
techniques highlight the importance of projecting structured light on surfaces with 
imperfections to help the technician facilitate detection (even if the technician is human, 
and the human brain is uniquely equipped to perform pattern recognition tasks). 
Keeping these techniques in mind, adopting structured light, using machine learning 
for classification, and utilizing light polarization as an additional modality that can help 
us observe defects, we can begin to survey the literature to build a visual perception 
system for defect detection.    
 

 
Figure 2.5. Left: Convolutional neural networks perform convolutions of the image gradually transforming it to a 
representation that is easy to classify. Middle: Vision transformers take this approach one step further by having an 
attention mechanism, where different attention ”heads” help create a more robust model with better understanding of 
the observed scene. Unfortunately, the examined problem cannot be naively tackled through the above methodologies. 
Defects can appear in any part of a metal sheet and are very local, thus requiring an approach independently targeting 
each part of the image. 

The field of visual perception for defect detection has undergone significant 
advancements, particularly with the adoption of machine learning and deep artificial 
neural network techniques. Traditional methods, which relied on manual inspection or 
basic image processing techniques like thresholding and edge detection, were often 
limited in their ability to detect subtle imperfections across varying textures and shapes 
of industrial components. These methods also required extensive calibration and were 
highly sensitive to environmental conditions, which could lead to inconsistent results in 
complex manufacturing settings. 
Convolutional Neural Networks (CNNs) [Alom18] revolutionized the way defects are 
detected on surfaces by automatically learning features from large datasets. CNNs excel 
at identifying patterns in images and can be trained to recognize a wide range of objects. 
Alexnet [Kriz12] pioneered convolutional network classification setting a new state of the 
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art on the Image Net benchmark. More recently, Vision Transformers (ViTs)[Khan22] have 
emerged as a promising alternative. ViTs utilize an attention mechanism that allows the 
model to focus on different parts of the image, effectively capturing both global and local 
features. This makes ViTs particularly well-suited for complex classification tasks. 
However, the complexity of the attention mechanism and the large computational 
resources required for ViTs can make them impractical for real-time applications, 
especially in an industrial setting where high-speed processing is crucial. 
Another approach that has gained traction is the use of hybrid models that combine the 
strengths of CNNs and ViTs. These models leverage the hierarchical feature extraction 
capability of CNNs while incorporating the attention mechanisms of ViTs to achieve a 
more robust and accurate defect detection system. Despite the potential of these hybrid 
models, they still face challenges in terms of computational efficiency and the need for 
large, annotated datasets. 
The de-facto state of the art standard in real-time image classification is the YOLO (You 
Only Look Once) family of methods. Since the original publication of the method 
[Redm16] a series of incremental updates have been proposed [Wang24], with recent 
versions also supporting extractions of per pixel masks (Ultralytics YOLO V8 
segmentation model). Due to its popularity, the YOLO architecture seems to be a valid 
candidate for the task. After careful consideration though, it exhibits several drawbacks 
when considered in the context of the defect detection scenario, especially when trained 
with a very small number of samples, and even more so when considering their 
dimensions and other, irrelevant metal markings. 
Given the specific challenges of detecting very small and local defects on metal sheets 
in an automotive manufacturing environment, traditional CNN and ViT-based 
approaches alone are insufficient (Figure 2.5). The defects in question are often as small 
as 300 microns and can appear in any part of the metal sheet, making the detection task 
highly localized. Therefore, a more specialized approach is required, one that can handle 
high-resolution images and focus on very small areas without overly relying on 
contextual information. In the context of the MAGICIAN project, we are exploring 
advanced techniques that go beyond conventional CNNs and ViTs. This includes the 
development of a specialized neural network architecture tailored for high-resolution, 
localized defect detection. Our approach integrates multi-scale feature extraction and 
local tile-based mechanisms, enabling the system to focus on minute details while 
maintaining the ability to process large surface areas efficiently through image batching 
and GPGPU parallelization. Additionally, the use of polarization imaging, as facilitated by 
the SONY XCG-CP510 sensor, provides additional data channels that can be leveraged to 
enhance the detection accuracy of small defects. 
Overall, while the state of the art in visual perception for defect detection has made 
significant strides, the specific requirements of detecting small, localized imperfections 
in automotive metal sheets necessitate a novel approach that combines high-resolution 
imaging with advanced, targeted neural network architectures. 
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Figure 2.6. The problem of defect detection on metal sheets can be considered closer to the digit recognition problem. 
Each local neighbourhood of pixels needs to be independently classified. 

More specifically, for polarization techniques, the repository 
https://github.com/tkuri/Awesome-Polarization  offers an extensive list of the papers and 
combining deep-learning approaches with cameras that can distinguish light 
polarization. Works like [Ding21] focusing on defect detection on composite laminates, 
and multiple works such as [Ba20, Desc21, and Lei22] also managing to extract 3D shape 
(Shape-from-Polarization SfP) from this input. The state of the art is [Mugli23] that 
combines an event camera with polarized lights for SfP. Event cameras allow for 
incredibly fast acquisition framerates in Kilo Hertz speeds. This means that even a very 
zoomed lens that covers a very limited area becomes viable since there are fewer 
limitations in terms of data processing. We considered such an approach, only 
“recording events” when there are polarization discrepancies between the observed and 
an ideal surface. This could allow a solution with a polarized light, event driven technique. 
However, unfortunately, event cameras are still not mature and such a camera system 
choice would entail many uncertainties, forcing us to select a regular global shutter 
system where the neural network will always have all the frame information to ensure 
the correct operation of the final system. 

2.3 OBJECTIVES AND REQUIREMENTS 

Hereafter we report the KPIs, as described in the Deliverable D2.1 - “Use Case Definition”, 
related to the Visual Perception for Imperfections Detection. These KPIs (Table 1.1) define 
the constraints within which the developed visual perception solution must perform. 
 

https://github.com/tkuri/Awesome-Polarization
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Scientific and technological 
objective KPI ID KPI definition After MAGICIAN 

(O1) A robotic perception module 
integrating visual and tactile 
sensors. The module will be 
embedded in a robotic sensor 
module (the SR, hereafter) and will 
be used for defects analysis and 
classification. The SR will replicate 
the skills of human workers through 
a learning scheme. 

O1-KPI-
SR1 

Smallest size of defect that 
can be sensed/detected by 
the perception module. 

≤0.3mm 

O1-KPI-
SR2 

Detection success rate vs 
humans. 

False positives: ≤120% 
Skipped defects: ≤110% 

O1-KPI-
SR3 

Car-body scan time 
compared vs humans on a 
benchmark set. 

≤110% 

Table 2.1. KPIs related to the Visual Perception for Imperfections Detection 

2.4 CAMERA SYSTEM 

The MAGICIAN camera system for imperfections detection is based on a SONY XCG-
CP510 sensor equipped with a global shutter polarization 5.1 Megapixel CMOS sensor and 
GigE interface. The sensor captures a polarized image with each shot and each individual 
pixel features one of four different linear polarization filters which enables four 
polarization images at 0°, 45°, 90° and 135° to be captured simultaneously.  
The acquisition framerate is 21 Hz, yielding a total of 105.283.584 measurements per 
second. The camera has a C-Mount lens. After trying different lens combinations, we 
decided to base the experimental setup on a ½" 12mm / F 1.4 lens that is in focus when 
positioned at approximately 30 cm from the observed object. The shutter speed of the 
sensor can range from 60 to 1/100,000 seconds. Given a 600 lumens light source, the 
minimum exposure time for a clear image is 3000 microseconds which is equivalent to 
a 333.3 Hz acquisition rate. This is important since, despite sampling the sensor at a rate 
of 21Hz, the visual fidelity of each of the recovered frames will not suffer from motion blur, 
vibrations that may originate from the robot arm, or other similar problems.  
The 2448x2048 retrieved image that features all 4 polarizations can observe an area of 
approximately 14.8 cm x 12.4 cm or 183.52 cm² or 18352 mm² (Figure 2.7). Given that the 
largest car dimensions of the Stellantis LCV platform (see Section 1.1.2.1 of D2.1) are 
4826,39 mm length, 1887,45 mm width and 1681,52 mm height we can proceed to 
calculate the theoretical time to scan this car platform.  
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Figure 2.7. Left: A very pronounced negative dent with a diameter of 2 mm. Right: a negative dent with a 0.3 mm diameter 
(matching the 300micron KPI). The camera system described uses a 12 mm lens to optimize for the expected minimum 
defect size while accommodating the largest field of view that minimizes scan time. 

We can assume that the scanning area of the car is a 3D rectangular prism without its 
bottom side. Its surface area can be calculated using the formula:  
Surface = 2 x (length x height + width x height) + length x width = 31,688,482.27 mm²  
Using the proposed camera system acquiring 21 frames per second and positioned by 
the robot arm, to record consecutive areas of the car surface and the field of view of 
18,352 mm², the theoretical minimum number of frames required to scan the whole 3D 
solid would be approximately 1726 frames which would, in turn, take 82,22 seconds.  

 
Figure 2.8. Considering a 3D rectangular prism, we can approximate the theoretical time to scan a car. 

In reality (as seen in Figure 2.8) the car scanning area is much less since the windows, 
wheels and especially the frontal view of the car is not populated. On the other hand, 
given the robot platform's physical capabilities we expect to have a slight overlap 
between subsequent images, thus also reducing the effective area scanned. Although 
the current camera system in theory seems to be close to the requirements of the 
project, a viable strategy to improve the scanning speed would be to involve more than 
one camera in the sensing robot arm. In this case a slightly higher zoom lens (for 
example 13 mm) could be preferable to ensure even better fidelity images and better 
handling of very small defects (Figure 2.22). 
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Figure 2.9. Left: A CAD concept of the initial camera system design. Right: The actual prototype camera system developed 
that also incorporates two light sources of 600 lumens with experimentally fine-tuned topology for better illumination. 

The camera system produces a stream of images encoded using the GigE Vision open 
standard. SONY provides an SDK for the camera that supports Degree of Linear 
Polarization (DoPL), polarization direction (Surface Normals) and stress and distortion 
(retardation) extraction. The SDK, however, is only available for Windows using the Visual 
Studio 2015 and 2017 platforms and has licensing limitations binding each copy of the 
software to specific hardware installations. 
 

 
Figure 2.10. To decide on the parameters of the camera system we create a utility that performs optics calculations and, 
given the available KPI constraints select a camera/lens configuration that best satisfies our accuracy requirements while 
also allowing for the fastest scan time possible. We experimentally validate our calculations using different 
camera/lens/lighting combinations as seen in Figure 2.3.  

2.5 DATA ACQUISITION AND ANNOTATION 

2.5.1 DATA ACQUISITION  

To facilitate data acquisition, after briefly experimenting with the proprietary closed-
source SDK of SONY, we opted to instead adopt the ARAVIS opensource video 
acquisition toolkit (https://github.com/AravisProject/aravis). After a brief initial 
troubleshooting period and patching the driver with the help of the ARAVIS developer 

https://github.com/AravisProject/aravis
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community to correctly acknowledge the SONY-XCG-CP510 sensor 
(https://github.com/AravisProject/aravis/issues/836), the ARAVIS SDK successfully and 
consistently acts as a dependable transport layer for the image streams of the camera. 
It implements both the GigE and USB3 protocols used by industrial cameras. Being open 
source allows integration of the Camera System with any operating system or PC 
software. At the same time, it allows low-level interception of the image immediately 
after receiving it from the network interface, thus being very efficient and not adding 
any computational overhead. ARAVIS is written in C and is application-agnostic. When 
used in conjunction with the Polarsense cameras, it provides the raw polarization 
readings and allows for configuration of all the exposed camera configuration 
parameters like exposure, black level, gain, buffer sizes etc. To extract Polarization 
metrics like Degree of Linear Polarization (DoLP), Angle of Linear Polarization (AoLP), 
perform demosaicing, analysis of stokes vectors and Mueller Matrix computations, all of 
which are analysis techniques for polarization image processing, we use the polanalyser 
package (https://github.com/elerac/polanalyser). However, these tools are mostly used 
for preview of the received polarized light from different directions of the light compared 
to the observed surfaces and the camera. As we will further elaborate in Section 2.6 
where we describe the employed methodology, our goal is to provide the Neural 
Network classifier with the raw data from the sensor for each polarization orientation. 
Thus, the ARAVIS SDK fits this task perfectly with minimal overheads and allows 
transparency in the image transport layers due to its open-source implementation. This 
may prove useful in tackling problems that might arise from the deployed network 
topology.  
To integrate ARAVIS with the developed classification prototype, a streaming utility was 
developed1, that utilizes shared memory video buffers2 based on the mmap mechanism 
of POSIX-compliant UNIX systems. The streamer executable is linked against the ARAVIS 
SDK that processes incoming UDP packets in the background and fills the last available 
incoming image. Upon receiving the signal for a completely received and available 
image, the streamer executable directly copies and maps it to a video buffer on system 
RAM. This mmaped image is also protected with a mutex for correctly defined access to 
the image, preventing potential over-writing from the next frame while it is being 
consumed. The python classifier is in turn using the Shared Memory Video Buffer python 
wrapper3 and can map the same memory area and expose it to the python runtime as a 
numpy object that is immediately compatible with all deep learning frameworks and 
libraries. The data acquisition pipeline is thus very lean in terms of lines of code, it relies 
on completely open-source components and leverages existing kernel mechanisms like 

 
 
1 ( https://github.com/AmmarkoV/aravis-c-examples/blob/main/07-streamer.c  
2 https://github.com/AmmarkoV/SharedMemoryVideoBuffers  
3 
(https://github.com/AmmarkoV/SharedMemoryVideoBuffers/blob/main/src/python/client_down
stream.py) 

https://github.com/AravisProject/aravis/issues/836
https://github.com/elerac/polanalyser
https://github.com/AmmarkoV/aravis-c-examples/blob/main/07-streamer.c
https://github.com/AmmarkoV/SharedMemoryVideoBuffers
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mmap. In total, the data from the camera get copied once to fill the buffer in the ARAVIS 
layer; after being assembled they are copied once more on the mmaped memory that 
is common for the streaming executable and python classifier, and they are copied one 
last time to the GPU in order perform hardware accelerated NN inference to achieve a 
fast framerate. 
Streaming the acquired data to the real-time classifier will be a very important task for 
the deployed robot and the above-described architecture has been designed from 
scratch to handle this task in the best way possible. A much easier task than production 
grade real-time image transport is to collect acquired data on disk to create offline 
training datasets for the method. To perform this task a separate executable “grabber”4  
was developed that encodes incoming images as portable anymap files (PNM or 
commonly called netpbm). Data Acquisition sessions are typically recorded at 10 Hz with 
a 3000-microsecond exposure time to contain crisp and spatially variable snapshots. 
Recording sessions are limited to 1500 recorded frames which take two and a half 
minutes to record and approximately 1 hour to annotate using the GUI annotation tool 
we have developed. 
A Data acquisition session starts with the following command: 
./06-grabber --size 2448 2048  --exposure 3000  --fps 10 --maxFrames 1500 -o name 
This yields a name/info.json file containing the capture parameters and 1500 files with 
paths name/colorFrame_0_xxxxx.pnm . The PNM is a lossless format so there is no 
degradation (such as lossy compression) of the received data, with each image 
occupying 4.8MB on disk. After the files are stored on disk, a secondary script is 
automatically executed, converting the raw data to AoLP, AoLP_s, AoLP_v, and DoLP 
formats for visualization purposes. After this operation is complete, the data is 
compressed in an archive of 2.3GB for each dataset. 

2.5.2 DATA ANNOTATION 

To annotate the data, we developed a tool based on the cross-platform WxWidgets 
library, specifically its wxPython wrapper.  Upon execution the tool opens a GUI window 
that accepts a path to a dataset and proceeds to open it and allow visual inspection of  
 

 
 
4 https://github.com/AmmarkoV/aravis-c-examples/blob/main/06-grabber.c 

https://github.com/AmmarkoV/aravis-c-examples/blob/main/06-grabber.c
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Figure 2.11. Combining the polarization channels in a single image yields a monochrome frame. Using the Segment 
Anything (https://github.com/facebookresearch/segment-anything) foundation model we can successfully identify and 
annotate different parts of the metal assembly of the car. This can help with tracking annotated defects from one frame 
to the next, however this technique is only viable when using lens with a broad field of view, that unfortunately do not 
allow enough resolution for the challenging defects we want to tackle. 

the captured frames. The tool has integration with the Segment Anything (SAM) 
foundation model [Kiri23] (as seen in Figure 2.11). This was initially considered in the hope 
that it could potentially help automate the annotation effort. Unfortunately, SAM is not 
capable of segmenting defects on the metal sheets using the zoomed lens. When used 
on a camera system with lens with a wider field of view, it can produce meaningful 
segmentation. However, this segmentation is not useful since, at this scale, defects 
become imperceivable due to their very small size. 
The tool automatically generates a .json file for each .pnm image in the same directory. 
It contains the MD5 hash of the image to guard against potential storage corruption that 
might subsequently affect the training effort as well as the dimensions of the image, the 
defects present on the image and their type and classification. Defects can be added to 
the image by selecting a defect type from the drop-down menu on the right and then 
clicking on the left or right images (Figure 2.11). The arrow keys of the keyboard or the 
buttons and seek bar of the GUI can be used to progress to the next frame. By clicking 
on an already existing defect, it can be selected and have its type changed. Furthermore, 
if the annotator mistakenly adds a defect, it is easy to remove it using the delete button 
or the appropriate GUI button. Using the combined acquisition/annotation toolkit 
described a total of 28 datasets of 1500 frames each have been recorded, for a total of 
42.000 frames. However, it is worth noting that physical changes on the camera, 
polarization orientation or light position and rotation invalidate previously recorded data 
since the intrinsic configuration of the experimental setup diverges. 
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Figure 2.12. The annotation tool graphical user interface while processing a recorded dataset. 

The grabber and annotation tools developed streamline dataset acquisition and 
preparation and provide a high-quality solution to these problems. The lossless 
recording ensures no image degradation after acquisition from the sensor, while MD5 
hashes provide passive protection from data corruption in storage that might silently 
affect and degrade training. The grabber utility can execute recording using a single 
command, while the annotation tool requires a few clicks and one keystroke per frame 
which only take a few seconds for the user. That said, due to the volume of data, this is 
still a very time-consuming and tedious task that needs to be manually performed with 
care to avoid mistakes. 
Once the camera system and classification neural network is finalized, efforts will be 
made to integrate them in the annotation tool to speed up and automate the annotation 
process. Samples that can be correctly automatically annotated by an existing classifier 
network are already covered by the existing training, so in essence we expect such 
automation to provide a moderate speed up in the annotation procedure. This in turn 
will allow only the most interesting new data not to be automatically annotated and thus 
requiring manual annotation. 

2.6 METHODOLOGIES EMPLOYED 

Developing the prototype system presented here involved usage and testing of various 
methodologies. After the beginning of the project, and before having any available metal 
sheet samples, we began preparation work by experimenting with simulated 3D 
rendered defects. Since most rendering ray-tracing engines do not account for the 
polarization of light waves, but just for its intensity, finding a suitable engine for the task 
was difficult. We were finally able to simulate a hyperspectral rendering pipeline using 
the Mitsuba 3 3D renderer (Figure 2.13). Despite being able to programmatically arrange 



 
 

 
 

31 
 

D3.1 FIRST DELIVERY OF PERCEPTION 
SYSTEMS  

the camera, lens and light in novel ways through software, after receiving the first metal 
samples it quickly became apparent that the “ideal” surfaces of the 3D models, even 
when textured with metal gradients had a significant gap from actual observations. We 
abandoned this methodology in favour of collected samples from the developed camera 
system. This allowed to eliminate the synthetic image discrepancies from actual data as 
an accuracy factor, a problem commonly referred to as domain gap. 

 
Figure 2.13.  Simulating rendering a car chassis with polarization enabled 3D rendering in Mistuba 3. 

Another method used to further understand and tackle the problem was the use of a 
commercial industrial metrology 3D scanner, namely the Artec Space Spider (Figure 
2.14). This device uses a structured light system with 5 cameras, a 6 LED array with 3D 
point accuracy up to 500 microns, a framerate up to 7.5 fps and a working area of up to 
900cm³. With this scanner providing 3D geometry on a very fine level, the task of defect 
detection could be transformed to plane fitting of the CAD parts compared to the 
observed 3D structure. Unfortunately, this is not possible for multiple reasons, the first of 
which is that despite the very high detail of the sensor, it is still not enough for the very 
demanding target accuracy, as specified in the relevant KPIs of the project. A second 
issue we can identify is the following: going through the steps of 3D reconstruction 
involves significant computational overhead for the localization and mapping of the 
different volumes that are not contributing anything towards the actual problem we are 
attempting to solve. Making matters worse, the size of the observed defects is so small 
that the actual defects may be drown in the noise of the cumulative discrepancies of the 
3D model compared to the 3D scanned surface, making it very hard to detect them 
through 3D fitting. The reconstructed surface contains useful 3D and texture features 
that be combined with the 3D rendering techniques to be used for a synthetic training 
approach, however this still generates a domain gap, compared to data recorded from 
the actual sensor.  
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Figure 2.14. Artec Space Spider industrial 3D scanner benchmarks on the defect sensing task. 

We experimented with off-the-shelf RGB sensors as a readily available methodology for 
image capture. Metal sheets have no colour, and thus the RGB information of a colour 
camera is only useful in the case of sealing material residuals, due to their characteristic 
sealant dark-blue colour. Introducing a controllable RGB light source (Figure 2.15) to the 
experimental setup however we can use the three wavelength bands (corresponding to 
red, green and blue) to excite the different channels of each coloured pixel. This way we 
can effectively record three different measurements from three different physical origins 
on the sensor. 

 
Figure 2.15. Early experiments using global shutter RGB sensor with 13mm lens and addressable RGB LEDs. 

Although this approach is very versatile since it does not require a sophisticated and 
expensive sensor, the main problem given the low exposure time we are targeting (3000 
μs), this setup results in underexposed images, unless using unreasonably bright light 
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sources, which is undesirable due to other constraints, such as power draw. 
 

     
Figure 2.16. Left: Using polarized light, we can estimate the light angle of attack θ for every pixel recorded by our camera. 
Right: The camera records 4 polarization orientations that provide fine grained texture on the metal surface. 

As hinted by our camera specification, the best performing methodology of those we 
attempted to employ involved the usage of cameras that can sense different light 
polarizations and thus provide a composite of four readings per pixel (Figure 2.16), 
yielding a rich source of information. Using polarized light enables us to have a much 
stronger light source that is slightly dimmed through a polarizing filter. The polarization 
filter absorbs the other light orientations thus dimming the overall light reaching the 
surface. However, using a 600 lumens LED light we can have very good observations 
even at extremely low exposure times such as the target 3000 μs. 
We base our classifier neural network on the Keras 3.0 framework, using the Tensorflow 
2.16.0 back-end that at the time of writing is the latest stable version. Keras is compatible 
with Tensorflow, PyTorch and JAX backends, thus providing high flexibility for the 
developed NN methodology. We have also developed bindings for ONNX porting of the 
network, thus making it compatible with all major NN ecosystems.  
The neural network methodology employed is a Conv-NET architecture with input tiles 
of 64x64x4 size, four convolutional layers featuring dropout, max-pooling and batch 
normalization. These in turn are followed by two densely connected layers, following the 
principles of the architecture shown in Figure 2.6. It is worth noting that despite the 
neural network being relatively small, having a larger network can quickly lead to 
overfitting in our problem. Furthermore, the incoming image is split in batches and the 
neural network needs to be executed thousands of times to cover each incoming image. 
The XCG-CP510 sensor yields 2448x2048 images that consist of 4 polarizations of 
1224x1024 pixels each. Tiling them in 64x64 tiles yields 19x16 tiles that at minimum we 
need to execute the neural network 304 times per frame to cover the whole image. 
Depending on the available hardware and given the 21Hz rate of incoming images, this 
means that the size of the network must also be constrained by our computational 
capacity to ensure timely classification. We perform training for 10 epochs using a batch 
size of 16, a learning rate of 10-4 using the ADAM optimizer, a categorical cross entropy 
loss, and utilizing early stopping. We perform training validation using either a 20% 
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validation split on the training data, or by using a different selection of the recorded 
samples for training and validation. Due to the low number of metal samples however, 
this strategy might not be optimal for the future, and after finalizing the neural network 
architecture through experiments with an increased validation set, until more samples 
are made available, it will be important to use the whole dataset for training extracting 
the best possible performing model from the available data.  
A final methodological consideration employed is balancing sample classes before 
training. As one can easily understand, the metal samples available to us (see Figure 2.1, 
2.2) have a disproportionately high ratio of clean surface compared to defects. This is 
useful because clean metal sheets are also important for training, serving as the negative 
class (“no defect present”). However, assuming that for each 100 recorded tiles, only one 
exhibits a defect, naively training a network directly on all these tiles entails the danger 
of overfitting, always classifying a surface as “clean” and achieving “99% accuracy” when 
naively measuring the accuracy on the task. This is the well-known problem of class 
imbalance, commonly encountered in classification tasks. To tackle this problem, during 
conversion from the annotated input images to the training tiles there is probabilistic 
filtering to ensure that there is no bias in the number of samples for a specific class. 
Furthermore, over-exposed areas (where all three channels are saturated), or where the 
standard deviation of intensities is below a certain threshold can also be omitted since 
they do not offer meaningful information and can be trivially excluded as defects even 
without the use of a Neural Network. 
 

 
Figure 2.17. Left: Using a fixed tile size for defects we decouple the very visible markings from the actual defects, thus not 
allowing the NN to ”cheat” by learning to detect the markers instead of the actual defects. This way also, despite a limited 
number of metal samples we can gather tens of thousands of samples required to thoroughly train a NN. Training data 
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is organized via keras.utils.image_dataset_from_directory conventions making it compatible with an existing code to 
handle and stream the data. 

2.7 PRELIMINARY RESULTS AND FINDINGS 

As described above, we have successfully built a working, proof-of-concept, Visual 
Perception for Imperfections Detection system. Although the system is still a prototype, 
it showcases the strengths of the employed sensors and techniques to tackle the 
problem. It uses light polarization as a primary imaging technique through the use of 
the SONY PolarSense sensor and a polarized light source (Figure. The selected lens has 
a 12 mm focal length, providing enough visual clarity to make the smallest possible 
defects have a 4x4 fingerprint in the 5MP sensor. The camera acquisition method is 
based on the opensource ARAVIS SDK, and we employ an optimized grabber that uses 
the mmap Linux Kernel mechanism to perform zero-copy transport of the image data 
to conserve resources. To annotate the datasets, we developed a GUI annotation tool and 
experimented with foundational models for segmentation. The neural network classifier 
uses a proven and well-studied Conv-NET architecture and is based on tiles, working 
around the low number of available samples, and also not overfitting to the marker 
annotations. We successfully train a network using 10K+ samples from each class (Figure 
2.17) and have a preliminary system that in relatively unoptimized python code can 
perform classification at rates ranging from 4Hz to 14Hz depending on the density of 
tiling on the image, as seen in Figure 2.19. 
As already mentioned, the currently developed sensor prototype is still just a proof of 
concept. We nevertheless performed a rigorous preliminary quantitative analysis of the 
developed system. We perform a validation/training split using 20% of recorded data 
using the sensor described (Figures 2.9 and 2.16). In the available recorded data, we have 
overwhelmingly more positive and negative dent training samples, followed by welding 
spots, then material deformations and finally only 3 samples for sealing residuals (Figure 
2.2). Therefore, to have a meaningful analysis, we perform the test on 3 classes, namely 
positive/negative/clean surfaces. This ensures the results reflect the model's accuracy 
and are not influenced by the number of available samples. As seen in Figure 2.18, after 
performing training for 200 epochs using a batch size of 16, a learning rate of 10e-4, using 
model checkpointing, and early stopping watch that triggers on epoch 197, the model 
achieves a 98.35% training accuracy with validation accuracy at 84.29% for the 2 
fundamental dent + non-defective classes. We expect improving the optics of the system 
(increasing the camera lens zoom) to make defects more pronounced and thereby 
improve these results. We will also use an active vision system with dynamic illumination 
to also improve errors that are accumulated due to over / under exposed areas of the 
image. Moreover, having a larger number of samples and richer training corpus will help 
bring the validation curve of Figure 2.18 closer to the training score in the same graph. 
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Figure 2.18. Training summary for 200 epochs using a learning rate of 10e-4 for classifying Positive/Negative dents and 
non-defective areas. After collecting the dataset, we perform a 0.2 validation split. Left: Plot for training loss (orange) and 
validation (cyan) sets.  The model achieves 98.35% accuracy on training data with 0.0303 loss and 84.29% accuracy on 
validation data with 0.3089 loss achieved after the 197th epoch. 

 
 

Figure 2.19. Using the methodology proposed we have a proof-of-concept system that can perform rudimentary 
classification. The proposed architecture is very flexible and depending on the tile size, density of batching on input 
images and available computational resources can be tailored to less dense (Left) or even per pixel classification results 
(Right). 

Qualitative classification results can be seen in Figures 2.20 and 2.21, where with green 
crosses the model highlights areas that are considered non defective. Areas without a 
green cross are suspect candidates of a possible defect, and areas with a red cross are 
areas where the system has triggered a defect classification. Overall, the system seems 
to identify pronounced defect cases. This experimental finding is also very promising 
since by increasing the optic zoom of the area we can make even smaller defects more 
pronounced thus showing as a viable way to improve accuracy. 
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Figure 2.20. Various samples are currently correctly handled by the developed system when running the camera against 
an incoming stream of images from the sensor and performing classification on the fly. 

Failure cases of the system are constituted by out of focus images, since the camera is 
currently manually operated and thus often does not stay in the optimal distance range 
away from the metal surface making small dents disappear from the sensor. The current 
setup has a single light source direction that depending on the angle of the metal sheet 
and camera system might occlude lighting or overexpose parts of the image due to 
specular reflections to the detriment of accuracy. Finally, the texture of the metal 
surfaces is very rich and features scratches, dust, particulate matter and various other 
marks and features. We observe that sometimes the system may identify scratches as 
defects (Figure 2.21 bottom right). These are false positive classifications, since the 
experts do not consider scratches as problems since they get gracefully covered in paint 
without causing problems for consumers. 
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Figure 2.21. Failure cases during our experimental evaluation include very small dents close to our minimum KPI (Top 
Left), a combination of very small (<700 micron) dents when being more than 2 cm out of focus (Top Right/Bottom Left). 
Finally, large scratches and on the materials that are not labelled as a defect by our experts are sometimes detected 
(Bottom Right).  Having only one light source constitutes a problem for the current system since depending on the angle 
of the camera in relation to the metal surface specular reflections may overexpose the parts of the image closest to the 
light source. A significant finding is that our tiling strategy successfully manages not to overfit the NN on the marker 
annotations and thus this makes the model correctly aligned to the task at hand. 

2.8 CHALLENGES AND LIMITATIONS 

As mentioned in the introduction of this section, the vision-based imperfections 
detection task is very challenging due to the large surface area that needs to be scanned, 
the very small size of defects, and the short time available to complete the scan. Given 
these constrains, we have developed a system that leverages light polarization and an 
optimized neural network to tackle this challenging problem. However, several 
challenges have been identified in the preliminary system: 
1. Hardware dependence 

• The most prevalent challenge to this preliminary system we developed is that, in 
contrast to other systems, it also has a hardware aspect that can make or break 
the performance. We have to carefully design the prototype camera systems, and 
we cannot rely on off-the-shelf hardware, which would allow to focus our efforts 
on the software and Machine Learning challenges. 

• Making matters even more challenging, the employed visual systems in the 
context of the project should be designed and assembled with very small 
tolerances. Furthermore, many hardware details, such as the camera sensors, lens, 
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lighting devices, polarizers, capacitors, electronics must be decided and fixed early 
on, because deviations will cause degraded performance in the final classification, 
stemming from hardware factors that are very difficult to control. Changes to the 
camera system invalidate all recorded and annotated data, making this a wasteful 
process. Designing the correct camera system and finalizing it is thus a very 
important limitation and a challenge of paramount importance for the timely 
execution of the MAGICIAN Project. 

2. Illumination Challenges 

• Although we have experimented with multiple light sources (Figure 2.12), the 
initial prototype (Figure 2.9) for practical reasons that have to do with electronics 
and physical construction simplicity only has polarized light coming from one 
direction. This however can be problematic with complex surfaces that might 
occlude light, causing it to stop shining the whole observed surface, and thus 
constraining the available data. 

• In such cases an active light system should illuminate the occluded area using a 
light from a different direction, thus correctly tackling the problem and utilizing 
the whole sensor area at all times. This fact might also prompt us to the revisit the 
addressable light scenarios, possibly emitting white light instead of RGB, for 
higher luminosity. 

3. Focus and Distance Sensing 

• The camera sensor has a fixed focus lens. There are auto-focus solutions that can 
automate focus; however, these continuously and incrementally alter focus 
leading to a high percentage of blurred frames on fast moving cameras, 
something which is unacceptable for our application. 

• Having a fixed focus lens that requires the camera to be positioned at around 30 
cm above the observed surface effectively transfers the focus task to the robot 
motion planning control loop. As an extra measure we are considering adding a 
closed-loop passive distance sensing circuit to the camera head that will 
constantly provide feedback to the robot, ensuring correct focus. Our experiments 
show that even cheap ultrasonic sensors can provide good distance accuracy at 
refresh rates of 100Hz. We will also experiment with infrared and laser time of 
flight range sensors, that however may cause problems by emitting light that 
interferes with the camera sensor.  

4. Dataset Size and Deep Learning 

• Despite TOFAS shipping us hundreds of kilograms of materials, these are 
ultimately few samples for deep learning standards. For example, since all the 
door frames we have received have welding spatters, it is possible for a neural 
network to associate the contours of doors with welding spatters, leading to a 
method that will not generalize well in the actual tasks. 

• The use of the tiled image approach bypasses this problem as well as the problem 
of learning the markings instead of the defects, however limitations on the 
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number of available samples lead to limited performance of the final classifier. 
5. Optics/Lens Selection 

• We are currently basing our system on a 12 mm lens, to best satisfy the given KPIs 
(Figure 2.10) and balance scanning time and resolution. Defects however occupy 
a very small area on the sensor compared to non-defects, and thus a slightly more 
aggressive zoom lens might be preferrable to improve accuracy on defects close 
to the KPI limit of 300 microns. Essentially in this case we would be trading better 
observation resolution for longer overall scan time. 

6. Network and Hardware Integration 

• The utilized camera system is based on Gigabit Ethernet and can also be powered 
over ethernet. This is very convenient since even a 20m CAT6 ethernet cable can 
be used, however it requires a gigabit switch and depending on where the camera 
will be plugged, network traffic on the switch might negatively affect image 
transport speeds. 

• This hardware limitation, along with the need to include GPU hardware 
acceleration for the neural network execution must be taken into consideration 
to prevent problems during integration of the camera system with the robot. 

Overall, the development of the vision-based defect detection system involves 
navigating several key challenges. The precise design of hardware components, effective 
light management, and focus control are all critical to the system's performance. 
Additionally, the limitations in sample sizes for deep learning and the complexities of 
integrating network and hardware elements must be addressed as we move forward.  
  

 
Figure 2.22. Left: A metal sheet seen using the SONY XCG-CP510 sensor, a 12mm lens and doing a Degree of Linear 
Polarization visualization. The sample features 5 negative dents highlighted with a marker by experts. We observe that 
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the metal has many visible abnormalities that however do not constitute defects since they are gracefully covered by 
paint. The system will need to be able to deal with such artifacts to suppress false positives. Right: Raw values from the 
sensor of a 64x64 pixel area of one polarization channel showing an actual defect up-close. 

 

3 TACTILE PERCEPTION SYSTEM FOR 
IMPERFECTIONS DETECTION  

3.1 INTRODUCTION 

The tactile perception system represents within MAGICIAN the second essential 
component, alongside the vision system, in the detection of imperfections. The primary 
challenge of this module lies in emulating the sophisticated manual skills of human 
operators, who rely on their sense of touch to identify and differentiate between defects 
on the car's surface. Unlike visual inspection, tactile perception entails direct contact 
with the car body, which presents complex and often irregular surfaces, such as curved 
profiles or tight spots. These surfaces require the tactile system to have a high degree of 
flexibility and precision to detect imperfections that might otherwise go unnoticed. 
Additionally, the sensors chosen for this module must be capable of acquiring data that 
accurately reflect the interaction with the surface. This data acquisition needs to occur 
at a speed comparable to human scanning, with high accuracy and precision, and a high 
sampling frequency to facilitate real-time defect detection.  

3.2 STATE OF THE ART 

Recent research has demonstrated that acceleration and force signals can be effectively 
used to identify the material of a surface and detect potential defects. When a rigid tool 
is stroked over a surface, variations in applied force and scan velocity significantly 
influence the acquired signals, which are crucial for robust surface classification systems. 
To address the challenge of accounting for variable scan parameters, studies in 
automatic texture recognition typically rely on controlled exploration trajectories or 
predefined scan times, often achieved with the assistance of robots, to ensure consistent 
signal acquisition. When a human operator runs a rigid tool over the surface of an object, 
the force is applied, and the scanning speed usually varies throughout the exploration 
and between different sessions. These variations in scan-time parameters have a 
significant impact on the acceleration signals that are captured [Kuchenbecker2011], 
[Romano2012]. To overcome these challenges, reliable acceleration-based features have 
been modelled for distinguishing between different materials by mitigating the 
dependency on force and velocity [Strese2016]. Additionally, dynamic friction force, 
which also depends on scan-force and scan-velocity, provides another dimension of 
analysis that complements acceleration data. The combination of these signals, as 
acceleration, force, and friction, has proven effective not only in classifying surface 
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materials, but also in detecting surface defects, making them valuable tools in advanced 
material inspection and defect detection systems. 
 

3.3 OBJECTIVES AND REQUIREMENTS 

Hereafter we report the KPIs, as described in the Deliverable D2.1 - “Use Case Definition”, 
related to the Tactile Perception System for Imperfections Detection. Similarly, and in 
parallel to the visual perception case, these KPIs (Table 3.1) define the constraints within 
which the developed tactile perception solution must perform. 
 

Scientific and 
technological objective KPI ID KPI definition After MAGICIAN 

(O1) A robotic perception 
module integrating visual and 
tactile sensors. The module will 
be embedded in a robotic 
sensor module (the SR, 
hereafter) and will be used for 
defects analysis and 
classification. The SR will 
replicate the skills of human 
workers through a learning 
scheme. 

O1-KPI-SR1 Smallest size of defect that 
can be sensed/detected by 
the perception module. 

≤0.3mm 

O1-KPI-SR2 Detection success rate vs 
humans. 

False positives: ≤120% 
Skipped defects: ≤110% 

O1-KPI-SR3 Car-body scan time 
compared vs humans on a 
benchmark set. 

≤110% 

O1-KPI-LRN 
SR1 

Misclassification rate with 
respect to humans.  

≤10% 

O1-KPI-LRN 
SR2 

Time to convergence. Observation time ≤ 15h to 
achieve KPI LRN-SR1 

Table 3.1. KPIs related to the Tactile Perception System for Imperfections Detection. 

3.4 TACTILE SENSORS 

To effectively replicate human tactile perception, it is crucial to mimic the function of 
mechanoreceptors, which play a key role during hand-surface interaction. This can be 
achieved by integrating both force and acceleration sensors into the tactile perception 
system developed by IIT within MAGICIAN (see Figure 3.2). These sensors work together 
to capture the complex dynamics of contact, allowing the system to detect and analyse 
the subtle variations in force and movement that are essential for identifying surface 
imperfections, much like human mechanoreceptors do. Force sensors are designed to 
detect variations in pressure applied to a surface, whereas accelerometers can measure 
oscillations or vibrations typically perceptible through human touch.  
To acquire these data accurately, a force sensor, specifically the ATI Nano17, and an 
accelerometer, the ADXL335, have been employed (see Figure 3.1). The ATI Nano17 
Network Force/Torque (Net F/T) sensor system is equipped with EtherNet/IP and CAN 
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bus communication interfaces, ensuring compatibility with standard Ethernet networks. 
Its web browser interface simplifies configuration and setup via Ethernet connection on 
all NetBox models. The option for a PROFINET interface adds flexibility. Additionally, the 
Net CAN OEM interface is designed for integration into small robot arms, offering CAN 
Bus and RS-485 serial interfaces for communication with a host computer.  
The ADXL335 is a 3-axis accelerometer with signal conditioned voltage outputs. The 
sensor measures acceleration with a minimum full-scale range of ±3 g. It can measure 
the static acceleration of gravity in tilt-sensing applications, as well as dynamic 
acceleration resulting from motion, shock, or vibration.  Different bandwidths can be 
selected to suit the application, with a range of 0.5 Hz to 1600 Hz for the X and Y axes, 
and a range of 0.5 Hz to 550 Hz for the Z axis, which are suitable to mimic the human 
mechanoreceptor bandwidth since the latter respond to stimuli in a frequency range 
(∼20 Hz to 1 kHz). 
 

 
Figure 3.1. The ATI Nano17 force sensor and ADXL335 accelerometer, along with their respective resolutions and sensing 
ranges. 

These two sensors can be effectively utilized for detecting surface defects when 
integrated into an exploration tool. Specifically, IIT integrated the proposed sensor set 
with diverse end effector designs in the MAGICIAN tactile perception system, enabling 
the exploration of a broad range of solutions. Preliminary studies conducted by IIT have 
shown that different patterns on the contact tip of the tactile perception module 
enhance detection by highlighting tactile features related to defects in car body parts. 
Moreover, multiple contact tip designs can be developed to meet specific needs; for 
example, a more precise tip could be used for accessing challenging geometries such as 
edges, while a broader contact area end-effector could maximize the scanned surface 
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and improve overall scan efficiency. The devices built to incorporate these sensors, along 
with the various types of end-effectors, are detailed in D4.1. 
 

 
Figure 3.2. Schematic overview of the force and acceleration sensors mounting on the tactile sensor probe. The proximity 
to the probe ensures minimal signal attenuation during data acquisition. When the probe is in contact with the surface 
being scanned, the corresponding force and acceleration signals are recorded, enabling the detection of potential defects 
through the collected data. 

3.5 DATA ACQUISITION AND ANNOTATION 

In the initial development stages, a software layer was created to facilitate data collection 
for offline analysis. The process involved using custom-made car bodies, specifically 
designed for this purpose, with defects comparable to those described by TOFAS to 
gather and label data for training and refining. The resulting dataset serves as a 
foundation for training, refining and fine-tuning the algorithms to identify and 
differentiate surface imperfections. 

Multiple users were intentionally included in the data collection process to introduce 
variability in the acquired measurements. This variability is essential for building more 
robust and accurate machine learning models for defect classification, as one of the 
main challenges with tactile data is that it can vary depending on how each user 
performs the scan. By capturing data from different users, the dataset not only enhances 
model generalization but also allows for the identification of optimal scanning 
behaviours, ultimately improving the efficiency and consistency of future data 
acquisitions.  

During a single acquisition, the user moves the tactile perception device across the 
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surface, ensuring that the sensing probe contacts the area of interest, whether it is a 
defect or not, depending on the aim of the acquisition (see Figure 3.3). The sensors 
embedded in the tactile perception device are placed to have their x,y-axis coplanar to 
the surface and their z-axis completing the right-handed coordinate system. There are 
no fixed constraints on the scanning method regarding speed, trajectory, or force. The 
starting and ending points of each scan may also differ between acquisitions, providing 
flexibility in the scanning process. The only system constraint is the saturation values of 
the sensors, which are, however, significantly higher than the force and acceleration 
typically used in this task (see Figure 3.1). 

The recorded acceleration data have a sampling frequency of 4 kHz to ensure 
compatibility with the full sensor bandwidth, while the force data are sampled at a 
frequency of 7 kHz. Each acquisition is saved in three separate text files: one containing 
force values, another containing acceleration values, and a third file that is used to 
realign the two time series, accounting for the different sampling frequencies of the two 
sensors. 

 
Figure 3.3. Example of a data acquisition process: the user moves the tactile sensor probe across the car part's surface 
while maintaining continuous contact with it. 

Data are collected using a custom-developed LabVIEW user interface (see Figure 3.4). 
This software facilitates the labelling process by enabling the user to easily assign labels 
to the data being acquired. In particular, data are labelled and organized into a 
hierarchical tree folder structure based on three main factors: the user performing the 
acquisition, the type of defect being examined (including 'no defect' as an additional 
category), and the specific sensing probe used for scanning. Each acquisition is indexed 
with an incremental trial number. This systematic approach ensures that all data are 
well-organized and easily accessible for analysis.  

After the tree folder structure is structured, a custom MATLAB script is used to post-
process the data, formatting and saving them in a .csv file while adding the post-
computed tactile features described in Section 3.4. The final directory structure and data 
formatting process are illustrated in Figure 3.5. 
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Figure 3.4. Before starting an acquisition, the user configures their ID, selects the type of surface defect, and specifies the 
sensor probe being used. Once these parameters are set, the user initiates the scan by moving the sensor probe in 
contact with the surface. After completing the exploration, the software can be stopped. The user may then either adjust 
the parameters for new conditions or retain the current settings for additional trials. 
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Figure 3.5. At the end of the dataset collection, the data is organized into a hierarchical directory structure. Starting at the 
root, there is a folder for each user. Within each user’s folder, sub-folders are designated for each defect label assigned 
during acquisition. These defect-labelled folders contain additional sub-folders corresponding to the sensor probes used. 
At the lowest level of the directory tree, folders contain data from the different trials. After post-processing, each trial is 
described by 6 .csv files containing raw time series and the extracted features. The labels for defect classification are 
based on those provided on the car parts by TOFAS, while the labels for different sensor probes follow a sequential letter 
sequence. Any acquisitions performed on areas without defects are labelled as "Free". 

In this initial phase, data was collected from four users across four types of defects 
(positive dent, negative dent, scratch, and weld spatter), plus areas without defects. For 
each defect type, five acquisitions were made with four different end-effectors. 

The final dataset comprises 400 acquisitions, each containing the following data: 3-axis 
acceleration signals, 3-axis force signals, power spectral density of acceleration signals, 
power spectral density of force signals, differential friction signal, and acceleration spike 
signals. These were obtained from 5 trials conducted with 4 different sensor probes on 4 
defect types (plus a defect-free area), by 4 users. 
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3.6 METHODOLOGIES EMPLOYED  

Force and acceleration data are utilized to extract features that can identify the presence 
of defects in a tactile signal acquisition.  
Features Extraction 
Through preliminary studies, three key tactile features have been modelled from the 
acquired data: 
1. Power Spectral Density (PSD): Both force and acceleration measurements are used to 
compute the Power Spectral Density (PSD) of the signals. More in detail, all the three 
axes of both the acceleration and the force signal are combined into one using the 
Euclidean norm (see [Landin2010]). This approach preserves the spectral characteristics 
of the recorded signals and reduces the data dependency of the device inclination 
toward the surface [Kuchenbecker2011]. Single-axis signals would suffer from the fact 
that the device is not constantly held perpendicular toward the surface during human 
freehand exploration of surfaces. The PSD is calculated using MATLAB for both the 
acceleration and force signals, based on their Short-Time Fast Fourier Transform (STFT). 
Since the STFT algorithm provides several tuning parameters, such as window size, 
window overlap length, and window type, preliminary studies were conducted to 
optimize these settings. As a result, the algorithm was configured to use a Hamming 
window with a size of 0.25 seconds and a 90% overlap. The PSD computed from the 
obtained STFT will be a three-dimensional representation, showing how the signal's 
energy is distributed across different frequencies at each time instant, as determined by 
the window size. The final total PSD provides valuable information about the spectral 
distribution of a signal's energy, highlighting the dominant spectral components at 
frequencies where the PSD values are higher, and indicating less significant 
components at lower PSD values. Additionally, the PSD derived from the STFT offers 
insight into how the spectral energy of a signal is distributed over the scan time. By 
summing the energy of all signal frequencies at each time instant, the total PSD of the 
force and acceleration signals over time reveals energy peaks as the device's probes pass 
over a defect (Figure 3.6). 

 
Figure 3.6. Total PSD plot of the force signal norm used to assess the feature's suitability for defect detection. The sensor 
probe was passed over the defect five times, resulting in energy peaks in the PSD at the time points corresponding to 
each pass over the defect. 
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2. Acceleration Spikiness: Spikes in otherwise smooth acceleration time-domain signals 
serve as strong indicators of bumpy surfaces or meshes where the recording device 
may occasionally get stuck. Also, for this feature the three axis the acceleration signal 
are combined to one using the Euclidean norm. An algorithm designed to detect these 
spikes has been modelled from existing studies [Strese2016].  Given the acceleration 
signal x, first a low-pass filter with a cutoff frequency of 100 Hz is applied. To further 
reduce the effects of increasing scan force or velocity due to the operator's hand 
movements, a Simple Moving Average (SMA) is calculated over 2000 data points (𝑥  2000), 
corresponding to a 0.5-second time window based on the acquisition sampling 
frequency of 4 kHz. Next, a threshold vector xth = 2*σ(x) + 𝑥 + 𝑥  2000 is calculated, where 
σ(x) represent the standard deviation of the acceleration signal x. Finally, the signal 
vector representing the acceleration spikes feature is derived as the difference vector 
x∆ = x - xth, where all the negative values are set to zero. 
  
3. Friction: Friction is a significant tactile dimension relevant to surface classification 
[Romano2014] that can be estimated from the force signal. Stickier surfaces exhibit a 
wider range of fx and fy values, which can be associated with dynamic friction. Here, x 
and y represent the axes of the plane parallel to the sensing surface of the force sensor. 
Variations in these values may indicate the presence of a defect on the scanned surface. 
The differential friction force values are calculated as Δfx,y = ∣fx−fy∣, providing further 
insight into surface characteristics and potential defects. 
Classification 
With the tactile data available, classification models will be explored to be able to detect 
and classify the defects. The features that are collected are time series. Various potential 
models have been examined to use for time series classification. Two different directions 
for classification were investigated and the implemented models will be detailed below. 
First with a short introduction of the models, followed by some more details on the 
implementation.  

- LSTM and CNN combined 
o Convolutional Neural Networks (CNNs) use convolutional layers to capture 

spatial hierarchies in data. They are good at capturing local patterns and 
features in the data. 

o Long Short-Term Memory networks (LSTMs) are an advanced type of RNN 
that uses gates to better capture long-term dependenncies.  

o Combining CNNs and LSTMs leverages the strength of CNNs in extracting 
local features and the ability of LSTMs to capture temporal dependencies, 
making it particularly effective for time series data where both spatial and 
temporal patterns are important. 

- Ensemble learning 
o Random Forest leverage multiple decision trees to capture diverse 

temporal patterns and reduce overfitting in time series data. 
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o Gradient Boosting sequentially builds models that correct previous errors, 
effectively capturing complex relationships in time series. 

o Bagging enhances the stability and accuracy of time series classification by 
averaging predictions from multiple models trained on different data 
subsets. 

For the two different approaches, different data is used as input. The LSTM-CNN 
combination uses the time series as input, while the ensemble learning method needs 
features as input. The advantage of the LSTM-CNN model is that it automatically learns 
relevant features from the time series data and that it is well-suited for handling 
sequential data and can be adapted for multivariate time series. However, the 
disadvantage is that it is computationally intensive and needs large amounts of labeled 
data to generalize well, otherwise there is a higher risk of overfitting. The advantage of 
the ensemble models is that these are more interpretable, less prone to overfitting and 
effective with small data. In these methods, custom feature extraction and engineering 
is allowed which can be useful to incorporate domain knowledge in the features. 
Disadvantages are that these models might not capture complex patterns in the data 
as effectively, and information about the temporal dependencies can get lost because 
features are treated independently. 
For the incorporation of both model types, three signals are used: AccelerationPsd, 
ForcePsd and Friction. The code for the classification is made in Python. First, it is 
observed that the time frequency of the Psd data (timesteps of 0.025) compared to the 
friction data (timesteps of 0.001) is not the same, which is desired while combining the 
timeseries in one model. For this, the option is to up- or downsample. For the purpose of 
keeping the training time short, the choice is made to downsample the Friction data for 
now by rounding the time index to the nearest 0.025 seconds, grouping by this rounded 
time, and then taking the mean of each group. 
For training and testing the models, in scikitlearn the train_test_split function is used, 
with a training set of 70% and a test set of 30%. The stratify parameter is used to make 
sure the train and test set have the same proportion of each class as in the original 
dataset. A random state is set to ensure the reproducibility of the data split. 
1. LSTM and CNN combined: The first approach consists of two models, for the two 
different order options: first LSTM, then CNN or the other way around. For these 
models, there are multiple hyperparameters defined which can be tuned to find the 
best hyperparameter combination for the model. The hyperparameters are: 

- Number of CNN layers 
- Number of LSTM layers 
- Filter size of the CNN layers 
- Unit size of the LSTM layers 
- Epochs 
- Batch sizes 
- Drop rates 
- Unit size of the Dense layer 
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There are some values that are not yet hyperparameters but for the future can be 
adjusted. Those are the learning rate, metric, pool size, kernel size and the patience. 
2. Ensemble learning: To use the ensemble learning models, features are extracted 
from the time series. For this, up- or downsampling is not necessary. Multiple features 
are computed per signal, and then combined to use in the classifier.  The features that 
are incorporated are the following, and these features are computed for all three 
signals AccelerationPsd, ForcePsd and Friction: 

- Mean 
- Median 
- Standard Deviation 
- Variance 
- Skewness 
- Kurtosis 
- Minimum 
- Maximum 
- Quantile 25 
- Quantile 75 
- IQR 
- Range 
- Peak count 
- Valley count 
- Zero Crossing Rate 
- Entropy 
- Autocorrelation lag 1 
- Autocorrelation lag 5 

Features with zero variance are removed, and further feature selection can be 
considered in the future. With these features, the three ensemble models can be 
applied: Random Forest, Gradient Boosting and Bagging. For all three, the number of 
estimators is set at 100 and a random state is set. 
 
Next to these developed models the Acceleration Spikes are considered, to see if those 
could be used those to first classify data into whether or not it was a defect, and then 
determine for the defects which defect it exactly was. For the classification of the spikes, 
it is wished to apply the same models as before but then for binary classification. 
However, the LSTM-CNN combinations seem to perform incredibely slow in this case, for 
which an explanation will be searched. Because of this, in the preliminary results for now 
LSTM-CNN (with 10 epochs) is included and not CNN-LSTM. 
For all of the above, first the data from one pulp (A) is used, with all the trials and users 
incorporated. With the real data, there will be looked into the differences between the 
classification results if multiple pulps, multiple users, or other combinations of signals 
would be used.  
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3.7 PRELIMINARY RESULTS AND FINDINGS 

Features Extraction 
By collecting the Power Spectral Density (PSD) data for various defects and different 
probe textures, an analysis of the crest factor of the PSD signal was conducted for each 
acquisition. It was observed that, in general, the crest factor of the PSD signal is higher 
when the device passes over a defect compared to when no defect is present. 
Furthermore, different probe textures can be employed depending on the type of defect, 
allowing for the optimization of the relative crest factor for improved defect detection 
(Figure 3.7). 
 

 
Figure 3.7. Box plots showing the distribution of the Total PSD crest factor of the force and acceleration signals for the 
entire data acquisition. The PSD crest factors are grouped by defect, and within each defect category, they are further 
grouped by the different sensor probes used. It is noticeable that the median of the Total PSD crest factors is generally 
higher when a defect is present during the acquisition. Additionally, this information can be leveraged to determine which 
sensor probes are more effective at identifying specific types of defects. 

By leveraging the acceleration spikiness feature, it was observed that the acceleration 
signals exhibit significant peaks when the scanned surface contains a defect, compared 
to when no defect is present. These acceleration peaks can therefore serve as reliable 
indicators of the presence of a defect and can also be used to characterize the type of 
defect encountered (Figure 3.8). 
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Figure 3.8. Acceleration Spikes feature for a single trial performed by one user. For each defect, the acceleration spikes 
feature is displayed for each probe used. It is evident that significant peaks in acceleration spikes occur when a defect is 
present, while no notable peaks are observed in the other case. 

Similarly to the acceleration spikiness feature, friction data can be compared between 
acquisitions with and without defects. By examining these comparisons, it becomes 
evident that dynamic friction exhibits a notable peak when a defect is present on the 
scanned surface. This increase in friction serves as an additional indicator of defect 
presence, reinforcing the findings from the acceleration spikiness analysis (Figure 3.9). 
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Figure 3.9. Differential Friction feature for a single trial performed by one user. For each defect, the differential friction 
feature is displayed for each probe used. Also in this case, even if less evident with respect to the acceleration spikes 
feature, it is evident that significant peaks in the feature occur when a defect is present, while no notable peaks are 
observed in the other case. 

Classification 
For all of the five classification models, some preliminary results were gathered on the 
test data available. Since this is not real data, conclusions are not drawn yet. It gives an 
indication of the performance of the models. The code for the models is prepared such 
that the real data can be tested quickly when becoming available. 
For the preliminary findings, we begin to look at the introduced models. For the LSTM-
CNN combinations, the code has been runned three times to see if they differ a lot, and 
for the results we give the average score. The results are:  

- First CNN, then LSTM 42,22% 
- First LSTM, then CNN 62,22% 
- Random Forest  70% 
- Gradient Boosting  63% 
- Bagging   70% 

Next to the overall accuracy, it is interesting to see for these models despite which defect 
it has to be, how much of the time is the fact that whether or not it is a defect, predicted 
correctly? For LSTM-CNN this is on average for the three runs 82,22% and for CNN-LSTM 
it is 72,22%. For the ensemble models, it is in all cases 96,67% of the time predicted 
correctly.  
 
If the acceleration spikes with a random forest are considered, it results in an accuracy 
into defect yes or no of 73,33%. With the LSTM-CNN model, that is 80%. The separate 
classification with the spikes does not seem to work that well, but with the real data we 
will check these results again. 

3.8 CHALLENGES AND LIMITATIONS 

One of the key limitations at this stage of the project is the use of data acquired from 
custom-made parts, which may not fully represent actual car-body components. This 
highlights the need to validate the system's performance on real car-body parts to 
confirm the validity of the current results. 
Data Acquisition 
A significant limitation is the large volume of data required to effectively train the 
models. The current dataset size is insufficient for developing a machine learning 
algorithm with finely tuned parameters capable of delivering robust and reliable results. 
Expanding the dataset is crucial to improve the algorithm's performance and ensure its 
accuracy in detecting defects under real-world conditions. Additionally, since the current 
data acquisition is performed with surfaces in a horizontal position, it may differ from the 
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vertical orientation used in the assembly line. To account for this, tests will be conducted 
with surfaces placed vertically to determine if there are any differences in the scanning 
process. Moreover, in this initial phase the participants collecting the data are not the 
actual operators, which could lead to discrepancies in the results. To address this issue, 
we are evaluating the possibility of conducting data acquisition sessions at TOFAS, 
allowing us to work with real operators. This will help us gather more representative data 
and better reflect the actual working conditions in a production. 
Classification 
Since the real data is not available, conclusions from the stated preliminary results 
cannot be drawn yet. When this becomes available, the available code will be executed 
and based on those results, we choose a path to continue on. We will continue and 
explore other combinations of signals and look at the results for different pulps. 
 
Expected challenges that might still come our way are: 

- Training time: especially the LSTM-CNNs are not that quick, for a combination of 
signals for one pulp, to check all hyperparameter combinations once takes 
around 20 minutes. If we want to run it several times, for different combinations 
of signals and pulps, and maybe add some more hyperparameters, this will 
probably increase. However, after training, it does not take long to classify the 
results. Depending on the requirements for the training time, it can become a 
challenge to deal with if the training time has to be shortened. Gated Recurrent 
Unit (GRUs) are an alternative to consider because those have similar functionality 
but are less computationally intensive. 

Data format of the real data: Now the data is gathered per defect, and the data on the 
real test parts will be too. It is expected that when the tactile sensing data will be 
collected in the real final case, it will be data from all around the car and it can be the 
case that we have a time series where there are multiple defects contained.  In this case 
first the defects have to be detected before they can be classificated, and this will be 
something to think about how to do this in a correct way. 
 

4 HUMAN MOTION PERCEPTION 

4.1 INTRODUCTION 

Human Motion Perception describes the ability of computer systems to sense human 
presence and motions using electronic sensors.  Perceiving humans can be tackled with 
various technological solutions ranging from inexpensive (~1€) Passive Infrared (PIR) 
human motion detectors that provide 1 bit of data (Motion/No motion), to commercial 
MOCAP systems that quickly exceed in cost the hundreds of thousands of Euros, require 
specialized suites with reflective markers and have millimetre precision for all human 
joints along with an inverse kinematics solution for the human skeleton. When framed 
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within the context of computer vision, a commonly posed problem that can aid in 
detecting human motion is that of Human Pose Estimation. Human Pose Estimation 
refers to the task of estimating the pose, in an appropriate representation, of the 
observed human(s) in the scene using visual input. Since humans prefer not to wear 
specialized clothes with sensors on them, Human Pose Estimation is commonly tackled 
using cameras that can observe users in a non-intrusive way. The representation of the 
estimated pose can be in 2D, by localizing bounding boxes, segmentation masks, or key 
points on the input image. For human presence and/or pure motion detection, 2D 
landmarks usually suffice. Most methods, however, focus on 3D human pose estimation 
that also recovers the 3D depth of each of the landmarks. This is especially useful when 
the 3D position of the human plays a role in occupational safety like the scenarios we are 
tackling in MAGICIAN.  2D and 3D human pose estimation can include the body, hands, 
face and gaze, all of which are subsets of the problem, with methods that try to tackle all 
of them being referred to as Holistic or Total Capture methods. Finally, as made evident 
in the following state of the art section, there are methods that not only recover key point 
positions but also estimate the human shape, including biometric parameters such as 
height, BMI, among others, thus also providing a comprehensive 3D mesh model of the 
tracked humans. These are “Human Mesh Recovery” (HMR) class methods and can 
provide pinpoint precision for the whole human body surface. 

4.2 STATE OF THE ART 

The advent of neural networks revolutionized 3D human pose estimation that was 
previously possible only using specialized RGBD cameras [Oiko11, Bhol14]. OpenPose 
[Qiao17] was the first method that really pushed the state of the art allowing full body, 
hands and facial 2D pose estimation in real-time through GPGPU acceleration for 
multiple persons using generic “in-the-wild" uncalibrated video streams.  After 
OpenPose, research pushed in two main directions: the first was towards optimizing 
accuracy with works such as HRNets [Wang20] that are among the recent state of the 
art 2D detection-based methods. The second direction included methods focusing on 
real-time performance such as BlazePose [Baza20, Mroz21], that are suitable for 
execution on computationally constrained hardware. 
Moving to 3D human pose estimation, early methods typically handled multi person 
scenarios by iteratively applying the same single person method on different areas of 
the image. Techniques can be also classified as one-stage or two-stage depending on 
whether they first involve an RGB to 2D pose estimation step or if they extract RGB to 3D 
in a single step, such as applying a single, monolithic network to the input image. 
Notable techniques in this category include X-Nect [Meht20] and ZoomNAS [Xu22]. 
Gradually research also included mesh reconstruction aspects, with methods such as 
Monocular Total Capture [Xian19], Expressive body capture [Pavl19], proHMR [Kol21] and 
DiffPose [Gong23].  It's worth noting that the top performing recent methods (Figure 4.1) 
in terms of accuracy all use a transformer-based architecture. Two of the most 
prominent such methods are MotionBERT [Zhu23] and ViTPose [XuY22]. Non-
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transformer architectures however continue to dominate real-time applications due to 
their superior computational performance. 

 

Figure 4.1. Leaderboard of state-of-the-art 3D Mean Per Joint Error (MPJPE) in the very commonly used Human 3.6M 
dataset [Ione13] in the last years from https://paperswithcode.com/sota/3d-human-pose-estimation-on-human36m 

Very recently, during the last year, mature foundation models that allow Depth 
estimation from RGB appeared with the notable examples of Marigold [Ke24] and 
DepthAnything [Yang24]. These, coupled with models for segmentation such as 
MaskRCNN [He17], Detectron 2 [Yuxi19] or Segment Anything [Kiri23], provided a new 
way to tackle multi-person 2D, 3D and Mesh recovery.  Even more recently, Meta 
announced the “Sapiens” [Khir24] foundation model5 for human perception that is the 
new state of the art in the field.   
 

 
 
5 https://about.meta.com/realitylabs/codecavatars/sapiens/ 

https://about.meta.com/realitylabs/codecavatars/sapiens/
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Figure 4.2. The Sapiens foundation model [Khir24] is the state of the art providing pose, segmentation, depth and 3D 
normals in unprecedented detail for humans observed by regular RGB cameras. 

4.3 OBJECTIVES AND REQUIREMENTS 

Collaborative robotics is often seen as the cornerstone of next-generation 
manufacturing solutions, commonly referred to as "Industry 5.0." However, 
distinguishing between robotic applications that qualify as "collaborative" and those 
that do not, is not always straightforward. Rather, it is easier and potentially more 
informative to identify a spectrum of possible scenarios.  At one end of the spectrum, we 
find stand-alone, classical robotic stations, which are classified as “collaborative” to 
simplify the physical layout of the production line (collaborative robots do not need to 
be segregated from humans). At the opposite end, we find truly collaborative 
applications in which humans and robots engage in a direct and physical collaboration 
(e.g., a robot can hand over tools to humans or help them move heavy loads).  In the 
MAGICIAN project, we find ourselves in an intermediate scenario: robots and humans 
share the same workspace, but they do not directly collaborate. The stations where the 
sensing robots identify defects and the cleaning robots remove them are shared areas, 
where humans work alongside the robots to supervise their operation or handle 
particularly complex tasks that exceed the robots' capabilities. In this setting, our 
problem is to ensure a safe coexistence without sacrificing productivity. We can identify 
two situations which can lead to potential problems: 

1. A mobile robot is moving along a possible collision course with a human, 
2. A robotic manipulator is executing an activity following a path that can collide 
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with some part of the body of the human operator and/or trap them. 
Our approach to deal with these potential problems hinges on human-aware motion 
planning. A general overview of the approach is illustrated in Figure 4.3. In this figure we 
assume the presence of a robot, which must execute a given set of tasks (such as 
scanning the surface of a car body in search of defects). Appropriate environment 
sensors detect the presence of humans in the scene and observe their motion. Based on 
this observation, a system produces a prediction of the human motion for a time horizon 
of 1.5 to 2 seconds. Based on this prediction and the knowledge of the task that the robot 
must execute, the human-aware motion planner decides a trajectory that minimises the 
risk of accidents while guaranteeing a satisfactory level of performance. 
In this section we are focusing on ways to produce an acceptable prediction for the 
human motion. The problem takes on a different form depending on whether we are 
dealing with a mobile robot or a manipulator. In the first case, we need a prediction on 
the position of the human body as a whole (for instance the centroid of the point cloud 
associated with the human). This topic was explored in previous projects, and we will 
build upon the results obtained at that time [Ant21]. For the second case, the robot and 
the human need to work at a close distance. Therefore, we need to consider the position 
of the different parts of the body since these fine details can prove useful. For instance, 
for a human with open and stretched arms, it is possible for the robot to use the space 
between the two arms. This motion prediction will be one of the outcomes of the project 
and it must meet the following requirements: 

1. Accuracy: the acceptable margin of error is in the order of a few centimetres; 
2. Time horizon: to be useful for motion planning, the prediction must be reliable for 

a time horizon of approximately 2 seconds; 
3. Efficiency: the system must demonstrate sufficient reactivity, meaning the 

prediction should be delivered within a few tenths of a second after new data is 
collected; 

4. Multi-scenario: in cases where uncertainty remains about the person’s possible 
movements, the system can generate multiple scenarios, each associated with a 
probability level.  

We can think of human motion perception as the interplay between two different 
conceptual modules. The first (elaborated in Section 4.4.1) deals with pattern recognition 
in the RGB level, with the task of correctly extracting the pose of observed humans 
regardless of their various optical appearance differences. The second module (Section 
4.4.2) deals with pattern recognition in the pose coordinate level, (regardless of their RGB 
appearance) trying to calculate, observe and predict patterns of motion in human joint 
coordinate trajectories.  Both modules form a common mechanism and play an 
important role for a successful motion prediction framework. A pose estimation module 
without good accuracy cannot provide accurate data for reliable motion predictions. 
Similarly, an accurate but slow rate of pose estimation predictions will not provide 
enough time resolution for detailed understanding of motion, thus resulting in skewed 
and unrealistic, erratic motion predictions. Furthermore, even with very good pose 
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estimation having a powerful motion prediction technique is essential for a system that 
can properly model and anticipate the complex and intricate human motions that can 
be encountered in an industrial environment like the one we target. 
        

 
 
Figure 4.3. The framework of Human-Aware Motion Planning. 

4.4 METHODOLOGIES EMPLOYED 

To meet the demanding requirements of the human motion predictor outlined above, 
the MAGICIAN team has thoroughly evaluated the best state-of-the-art solutions that 
are assessed in Sections 4.4.1 and 4.4.2. For pose detection we are developing a novel U-
NET based architecture that regressed 2D pose, depth and normals in real-time to 
facilitate the motion prediction task while also providing depth perception to the 
magician cobot. The 2D pose can also be augmented using a MocapNET that performs 
inverse kinematics regression to provide higher level data. For motion prediction, after 
careful assessment, we narrowed our options to two alternatives: applying one of the 
latest deep learning approaches [Yan2024, Tian2024] or using classic clustering 
techniques informed by our understanding of the specific process. 

4.4.1 TECHNIQUES FOR POSE DETECTION 

We will begin by describing the pose detection sub-problem, which in general consists 
of the task of receiving an RGB image featuring persons, identifying them and the joints 
of their skeleton and providing this data as high-level output for use by other modules. 
Tackling the task is very challenging since the appearance of humans in an image widely 
ranges when they are recorded as 2D projections of red, green and blue light intensities. 
The human body is very flexible with many configurations, human appearance is very 
varied, parts of the scene may be occluded by obstacles, cameras suffer from lens 
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deformations, thermodynamic noise, motion blur, vibrations and other potential 
artifacts, observations might have multiple explanations and differences in lighting 
given the low dynamic range of typical camera CCDs pose significant challenges that 
need to be systematically overcome. Deep learning approaches have recently managed 
to tackle the very high dimensional space of RGB images successfully performing pose 
estimation and the next sections will briefly describe the various involved techniques 
adopted for use in the context of the MAGICIAN project. 

4.4.1.1 DATA ACQUISITION AND ANNOTATION 

Data acquisition for pose estimation methods presents significant challenges in the 
European Union. Collecting images that contain individuals with identifiable and 
potentially privacy-sensitive information is both costly and difficult under European law 
and GDPR provisions. Additionally, the consequences of a person withdrawing consent 
for inclusion in a training set are unclear. Removing such data from an already trained 
model without retraining the model from scratch remains an unresolved research 
problem. Moreover, training a method unbiased in gender, race, and appearance is 
highly challenging. Naively collecting data can result in a neural network that is 
significantly biased against certain demographic groups, even if it appears to perform 
well for individuals who are well-represented in the training set. To this end, we use well-
established open datasets such as COCO17 [Lin14], MPII [Andriluka14], EXLPose [Lee23], 
AIChallenger [Wu17], and the AM-2K [Li22] and BG-20K [Li22] datasets as our primary 
sources. These provide a solid baseline onto which we can incorporate our own data. 
To effectively augment the openly available datasets, we use generative AI-generated 
data (Figure 4.4), which are programmatically created to better suit the intended 
industrial application while aiming to represent all worker categories in an unbiased 
manner. Additionally, data from other sources can be easily incorporated after being 
processed through a series of segmentation and ground truth extraction steps for 
training. 
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Figure 4.4. Using generative AI, namely score-based diffusion techniques, we can programmatically create synthetic 
scenes that loosely resemble our target application. This way we can provide a richer source of samples while bypassing 
the legal, ethical and practical complexities of collecting actual data from real workers. 

Complementary to the defect annotation tool presented in Section 2.5 of this deliverable, 
we also developed a Human Pose Annotation counterpart. Using the same underlying 
GUI frameworks and a similar visual language, this tool (Figure 4.5) allows users to 
annotate captured human pose data and prepare it for training, as shown in Figures 2.8 
and 2.9. Depth and 3D Normals are automatically provided using Depth Anything 2 
[Yang24], while segmentation masks are extracted using Detectron 2 [Yuxi19] and 
DPText [Ye23]. Finally, 2D pose estimation is initialized using the latest version of 
OpenPose to automatically annotate the 2D landmarks. After these procedures are 
completed, the user can review and correct human joint landmarks, which are often 
miscalculated in challenging images with many people and occlusions. The introduction 
of the Sapiens Foundation Model [Khir24] (Figure 4.2) offers a potential future solution 
for initializing annotations, helping to reduce the time required for annotators by 
providing a more accurate starting point for each image. 
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Figure 4.5. The Annotation tool developed while used to annotate synthetic data generated using generative AI to be 
included in our model's training. 

4.4.1.2 POSE DETECTION METHOD 

For the neural network architecture, the priority is real-time performance. Particularly in 
production line settings, it is impractical to deploy a complex pose estimation method 
that cannot deliver results at interactive frame rates (>10Hz). The neural network we 
developed utilizes the same toolkit as the defect detection module to ensure shared 
dependencies and full software compatibility. 
To ensure the neural network is robust to adversarial conditions it might encounter, a 
series of augmentations are applied to the training data. These augmentations include 
brightness and contrast adjustments, stochastic uniform Gaussian noise corruption, 
burned pixel simulation, as well as pan, zoom, and rotation transformations. These 
techniques help the neural network develop internal representations that are resilient 
to common input artifacts, ensuring proper generalization across various adversities it 
may face during deployment. 
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Figure 4.6. The architecture employed is based on U-NET, receives an RGB input and outputs 2D key points, a depth map, 
normals as well as segmentation data, providing ample data for the human motion detection task and allowing the cobot 
to maintain a good understanding of human presence and motion. The network works at a 15Hz framerate at mid-tier 
graphics card (GTX1060) in order not to monopolize the available computing power on-board the robot. It's worth noting 
that during the time of writing this deliverable, the "Sapiens" foundation model by Facebook/Meta (Figure 4.2) beat us to 
publication, now being the first published work made available leveraging the idea of regression of key points, depth 
maps, segmentation masks and normals. 

Due to the computational complexity of training large neural networks, we employ a 
multi-core optimized low-level data loader written in C that is thoroughly optimized for 
optimal use of the available computational resources.  
 

 
Figure 4.7. We employ rigorous profiling using valgrind to optimize the data loader architecture for our NN training code. 
Having an optimized training methodology available from the start of the effort will ensure the maximum amount of time-
savings through the training lifetime of this project. 

For the task of human motion detection from RGB images, the trained neural network 
we propose converts RGB inputs into depth, normals, key points, and segmentations, 
providing a wealth of data. However, further human pose estimation data can be 
extracted using a method based on inverse kinematics estimation. If needed, we plan to 
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utilize the MocapNET [Qamm19, Qamm20, Qamm21] methodology (Figures 4.8, 4.9, 4.11, 
4.12) as a back-end solution to provide this data in real-time. 
 

 

Figure 4.8. MocapNET [Qamm19, Qamm20, Qamm21] is a 2-stage method that can perform inverse kinematics from a 
cloud of 2D points using an ensemble of neural networks. The output of the method is a Bio Vision Hierarchy (BVH) 
MOCAP skeleton output that is similar to data acquired by systems with motion capture suits and markers. 

As mentioned in Section 4.2, traditional human motion detection and pose estimation 
methods typically focus on the body, excluding the face and hands. This is mainly due to 
sensor resolution limitations and the fact that in full-body image streams, hands often 
occupy only a few pixels, making it challenging to discern hand poses. However, with 
modern high-definition video streams, holistic capture methods can now address the 
combined problem of body and hand motion. The two methods we propose also 
account for hand poses, provided a clear, high-resolution stream is available. The U-Net 
we developed (Figure 4.6) provides depth information for the body, hands, face, and 
objects in the scene (Figure 4.10). Additionally, [Qamm21], when given 2D landmarks for 
hand joints, can offer an inverse kinematics solution for observed hand poses, as shown 
in Figure 4.8 and Figure 4.9. It is worth noting that the MocapNET method also supports 
facial and gaze tracking [Qamm23]. However, since each body sub-hierarchy requires 
additional computational resources, we expect the facial landmark capabilities will not 
be used, especially because factory workers often wear protective glasses and masks 
that cover their eyes and face.  
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Figure 4.9. Qualitative results for body+hands using MocapNET [Qamm21] ensembles for various types of input data. 

By using multiple camera sources and applying the same techniques to each incoming 
video stream, we can scale the human perception pipeline to a multi-view scenario. With 
more than one candidate output pose, we can average the recovered results across 
observations, accounting for limb visibility to help reduce noise and pose jitter. However, 
it is important to note that processing multiple streams in real-time is computationally 
expensive, as resource demands scale linearly with the number of video streams. 
Ensuring high-quality 3D human pose estimation even in a monocular RGB scenario 
allows us to handle cases with additional streams more efficiently.  

4.4.1.3 PRELIMINARY RESULTS AND FINDINGS 

Although we do not currently have any human-related datasets from the factory lines of 
the project, we have obtained encouraging preliminary results by training the proposed 
methods on open datasets and qualitatively testing them on data recorded in 
compliance with EU procedures. This testing was conducted within the framework of 
the EU H2020 SustAGE Project (no. 826506).  
By using real-time segmented depth streams directly extracted from RGB, along with a 
minimum safety distance policy, we can establish a baseline human-aware motion 
planning module. Providing the system with additional annotated data will further 
enhance results. Additionally, depending on the available computational resources, 
modifying the neural network in Figure 4.6 by adding more layers and increasing its 
capacity can yield even cleaner output, based on our needs following experimental 
evaluation of the solution.  
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Figure 4.10. Depth stream acquired in real-time (20Hz) from RGB images using the developed U-NET of Figure 4.6. The 
proposed framework provides a dense depth map of the scene thus hopefully mapping closely to the Human-Aware 
Motion Planning task by allowing the robot to avoid impacts with humans and objects on the scene, while also providing 
enough information for finding contact points of the person with objects to facilitate the motion prediction task. Dataset 
provided by the EU H2020 SustAGE Project (no. 826506). 

Using just the 2D landmarks of the observed human and a neural network capable of 
performing real-time inverse kinematics, like MocapNET [Qamm19, Qamm20, Qamm21], 
we can extract a 3D skeleton. This approach works even without having a solution that 
provides a dense depth map of the scene in which the robot operates. The resulting 3D 
skeleton not only contains the 3D positions of each observed joint but also the 3D 
orientation of each. This transforms the human skeleton from a list of 2D or 3D points 
into 3D rotations for each degree of freedom of the human body, allowing us to analyse 
their motion, acceleration, and velocity (Figure 4.12). These insights can then be used to 
anticipate human movements and integrate them into the robot’s motion planning 
module. 
However, since the input to the inverse kinematics step is the human 2D joints detected 
in the RGB image, this technique is more susceptible to occlusions and noisy 2D skeleton 
outputs. Also, the robot’s field of view plays a crucial role in this task’s success. If large 
parts of the skeleton are not visible to the system, solving the inverse kinematics chain 
becomes impossible.  
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We believe that combining these two methods addresses the problem from both a 
bottom-up (scene depth) and a top-down (human inverse kinematics) approach. The 
intersection of these methodologies will ultimately enable a high-confidence motion 
planning module, ensuring safe interaction between robots and factory workers. 
 

 
Figure 4.11. Given 2D joint key points for an observed human, MocapNET [Qamm19, Qamm20, Qamm21] can provide a 
3D inverse kinematics solution for the skeleton in real-time, to provide high-level pose data to the motion prediction 
module. Dataset provided by the EU H2020 SustAGE Project (no. 826506). 
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Figure 4.12. MocapNET real-time 3D kinematic solution for each observed joint plotted in 1D graphs for each of the joints 
tracked. Using this high-level as input, the state and acceleration of the various limbs of the human can be studied to 
create policies altering the robot trajectory according to the predictions of the human motion. Dataset provided by the 
EU H2020 SustAGE Project (no. 826506). 

4.4.2 TECHNIQUES FOR HUMAN MOTION PREDICTION 

The estimation of human pose is a preliminary activity needed to predict human motion. 
As already mentioned, we adapted two different families of techniques: deep neural 
networks and classic clustering. 

4.4.2.1 NEURAL BASED TECHNIQUES FOR HUMAN MOTION 
PREDICTION 

We have tested two state-of-the-art algorithms for human motion prediction. As 
detailed next, we had to do some adaptation to meet the challenging real—time 
requirements of our application. 
The first is Adaptive Spatial-Temporal Graph-Mixer [Yang2024].  The input to the 
network is the 3D pose sequence. The first step of this solution is pose embedding 
through an Adaptive Spatial Graph Convolution. This step is needed to map the pose 
sequence to a higher dimensional space. Then the spatial and temporal dependencies 
are modelled separately with Spatial and Temporal Graph-Mixers using 3 different 
adjacency matrices each. The 3 matrices are: predefined, learnable, and adaptive. A 
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prediction head then outputs the predicted future 3D pose sequence. We modified this 
method by using only one adjacency matrix (the predefined one with 
dependencies equal to the structure of the skeleton) to speed up the real—time 
performance. We tested both versions are tested with 12 poses as input and a prediction 
of 30 poses with a frame rate of 30fps. The average error at the wrist with three adjacency 
matrices was 102 mm, while the single matrix delivered an average error of 103mm with 
similar joint-level errors. 
The second technique is the transformer-based diffusion model [Tiang2024]. The input 
3D pose sequence is padded and transformed into the frequency domain using Discrete 
Cosine Transform (DCT). The denoiser network, composed of several Transformer layers, 
generates multiple predictions, which are mapped back to the temporal domain using 
Inverse DCT. We tested the method with input sequences of 6, 12, and 15 poses, 
predicting 30 or 60 future poses at 30fps. The average prediction error was 110 mm, with 
wrist-level errors of 135 mm and 147 mm. This method, however, cannot achieve real-
time predictions due to a 0.1s processing time for each prediction. 

4.4.2.2 CLUSTERING-BASED TECHNIQUES FOR HUMAN MOTION 
PREDICTION 

This method is based on two phases: 1. we leverage a clustering technique to group 
similar human gestures, 2. during the prediction phase we retrieve the centroid of the 
closest cluster, and we use it for prediction (see Figure 4.13). Below we discuss the 
segmentation process and the specific clustering model used. 

 
Figure 4.13. Segmented joint position time-series data clustered using GMM with DTW, resulting in time-series predictions 
with associated probabilities. 

Segmentation. The first phase is to use segmentation to isolate the different gestures. 
The input are the skeleton data using a ZED camera and the official SDK. The skeleton 
data is collected over time, and the time-series of the skeleton is segmented based on 
changes in the direction of the terminal velocities of the hands. A change in direction 
typically indicates a change in gesture. For this initial implementation, we opted for a 
very simple segmentation logic based on these velocity changes. However, this 
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approach is intended to be a starting point and can be replaced in the future with more 
sophisticated segmentation techniques as our methods and requirements evolve. 
Clustering of Gestures. To cluster the human motion, we implemented a Gaussian 
Mixture Model (GMM) based on Dynamic Time Warping (DTW) to compare time-series 
samples. Each cluster is represented by a multivariate Gaussian and can approximate 
the cluster’s members in the prediction phase. As new samples of current joint positions 
in 3D space are collected, we recompute the weight of each Gaussian in generating the 
time-series. This process provides a probability vector indicating cluster membership. 
Performance. The performance of the clustering solution has been tested on a dataset 
[Cicirelli2022] produced on an assembly task, which is reminiscent of the type of tasks 
considered in MAGICIAN. We have considered a selection of gestures scoring similar 
result. A representative example is the error at the wrist, for which we represent the 
absolute mean error and the variance in the following example plot. On the x axis we 
report the interval of time elapsed, which is proportional to the number of acquired 
samples. 

  

Figure 4.14. Reduction of wrist position error over time, showing the decrease in mean error and variance as the 
prediction horizon extends. 

As we can see the error decrease both in terms of mean and variance as the prediction 
horizon progresses. This perfectly understandable since, with a small number of samples, 
there can be a few clusters with non-null probability. As time passes and more and more 
samples are acquired, we can remove the ambiguity and identify a single cluster with 
high probability. Still, even with a long-time horizon, the prediction accuracy is sufficient 
to be used by the motion planner. 
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4.5 CHALLENGES AND LIMITATIONS 

The presented methods for addressing the problem of human motion detection are 
designed to tackle a highly complex challenge that, until recently, was considered 
infeasible to solve in real-time without specialized sensors due to its high dimensionality. 
By leveraging modern neural network techniques, we are developing a novel real-time 
module. Preliminary tests with input data that resemble the expected conditions on the 
deployed factory floor indicate that the module is performing adequately.  
That said, for the system to achieve the best possible results, it is crucial to incorporate 
actual data from the specific use case, which we currently lack. To compensate, we are 
using a large collection of openly available generic training data, generative AI 
techniques designed to resemble industrial applications, and datasets from real factory 
floors like our target environment. As a result, we rely on the developed solution's 
generalization ability to address the specific use case. However, recording and using data 
from a robot equipped with a camera matching the specifications of the target system 
and capturing images from the actual factory floor would have a very positive impact on 
the module’s accuracy. 
Another significant challenge in the development of these large neural network-based 
methods is the sheer computational intensity of performing back-propagation over 
hundreds of millions of weights using hundreds of thousands of training samples. 
Despite any optimizations applied, this process remains incredibly time-consuming. As 
shown in Figure 4.15, with our current resources, we are limited to only four neural 
network iterations per month. While rigorous validation techniques and a well-defined 
test set give us a good sense of overall accuracy, identifying and resolving issues is slow 
and difficult. This is because any update to the neural network architecture requires 
retraining. Additionally, the black-box nature of neural networks is a key limitation in 
systems like this, posing a challenge for this module. 
Despite having candidate methods that can successfully facilitate human pose 
estimation, motion detection, and prediction, we must always bear in mind that these 
are fundamentally affected by practical issues such as occlusions, camera position, field 
of view, brightness, and contrast. For example, if a camera is mounted on a robot in a 
position where its view becomes occluded when the robot arm moves in certain ways, 
the system may be unable to correctly assess the situation, not due to a technical flaw in 
the neural networks, but because of the physical limitation of not being able to properly 
observe the scene. Similarly, if a camera sensor for human monitoring is positioned on 
the sensor head inspecting surfaces for defects, its rapid movements and close proximity 
to the scanned object may result in improper exposure, blurred images, or dark 
observations, making it unsuitable for accurate human detection.  
A final challenge for the developed system arises from the real-time requirements of the 
module. Most high-accuracy 3D human pose estimation methods use heavy 
transformer-based neural network architectures, often enhanced by stochastic 
optimization loops, which deliver highly detailed output. However, robot motion 
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planning requires controllers to receive high-frequency input to operate effectively, 
creating increased demands for the computational performance of the human 
perception loop, which conflicts with the need for high accuracy. Both methods 
examined for this task have been designed with this trade-off in mind. In particular, 
MocapNET uses sparse 2D key points as input to enable real-time operation. However, 
this approach introduces certain limitations, such as multiple 3D solutions 
corresponding to the same 2D projections, geometric symmetries that may cause 
ambiguity, and the potential negative impact of occlusions or 2D noise on accuracy. 

 

 
Figure 4.15. Despite the various training optimizations (Figure 4.7), training a 200M model with 120K training samples on 
a workstation equipped with an NVIDIA RTX A6000, 512GB RAM and a 16 core/32 thread CPU takes 2600 sec / epoch, or 
approximately one week for a full training session. This makes iterations and improvements on the model very time 
consuming, with a slow development time. 

5 LEARNING DEFECT WORKING SKILLS FROM 
HUMANS 

5.1 INTRODUCTION 

The learning defect working skills from humans module represents a crucial component 
in the development of the MAGICIAN project, and it must be capable of performing high-
precision manufacturing tasks. The primary challenge in this area is to replicate the 
intricate manual skills that human operators employ to detect, identify, and rectify 
defects on complex surfaces, such as those found on car bodies. This requires the robotic 
system to possess a high degree of flexibility and precision to mimic human-like 
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adaptability. Additionally, the system must be equipped with algorithms that can 
accurately capture the nuances of human actions with the surface, at speeds 
comparable to human performance, with high accuracy, and real-time responsiveness. 
Furthermore, the system needs to be applicable to different parts of the car body, 
making necessary the capability of generalization. 
 For these reasons, we chose to employ Dynamic Motion Primitives (DMPs), which are a 
cornerstone in robotic learning and control, particularly for applications requiring the 
replication of complex, human-like movements. The core idea behind DMPs is to 
encapsulate motion patterns in a mathematically tractable form that can be modulated 
in real time to adapt to new situations. Originally proposed for simple reaching and 
grasping tasks, DMPs have been expanded to address more sophisticated scenarios, 
such as defect detection and correction in manufacturing environments, where robots 
work alongside humans. These tasks demand high levels of dexterity, adaptability, and 
safety, qualities that DMPs are inherently capable of providing. 
 However, traditional DMPs operate in Euclidean space, which may not always be the 
most natural or efficient representation for the robot's task or configuration space. 
Riemannian manifolds, which generalize the concept of curved surfaces to higher-
dimensional spaces, offer a more suitable mathematical framework for capturing the 
complex, nonlinear structures inherent in robotic motion. For instance, representing a 
robot's joint configurations or sensor data as points on a Riemannian manifold allows for 
more natural interpolation, smoothing, and learning of motion trajectories. This 
approach enables the robot to better understand and replicate human-like motions that 
are critical for tasks such as defect detection and correction in manufacturing, where the 
robot needs to handle irregularities and uncertainties. 
 In this context, we aim to integrate DMPs with Riemannian manifolds to learn and 
execute defect working skills from humans in a collaborative setting. This integration 
allows for the natural representation of complex motion trajectories and enhances the 
robot's ability to generalize from a limited set of human demonstrations. The goal is to 
create a system that can efficiently learn from human operators, adapt to new and 
unforeseen defects (Figure 5.1), and work safely alongside humans on factory floors. 
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Figure 5.1. Example of generalization ability of DMPs together with Riemannian metrics. Changing the goal pose, the DMP 
is able to generate the same trajectory from the starting pose, without losing any information. 

5.2 STATE OF THE ART 

The field of Dynamic Motion Primitives (DMPs) has seen substantial development since 
its inception. DMPs are a framework that simplifies the generation of complex robotic 
movements through a combination of nonlinear differential equations and attractor 
dynamics. Originally introduced by Ijspeert et al. [Ijspeert2002], DMPs have been used 
extensively for trajectory learning, where they offer robustness to perturbations and the 
ability to modulate learned motions in real time based on environmental feedback. 
 Recent advancements in DMPs have focused on addressing their limitations, such as 
their inability to handle complex, high-dimensional, and nonlinear task spaces. 
Modifications like goal switching, obstacle avoidance, and multi-dimensional DMPs have 
been proposed to tackle these issues. Khansari-Zadeh and Billard [Khansari2011] 
introduced Stable Estimator of Dynamical Systems (SEDS), a method that learns stable 
nonlinear dynamical systems for trajectory generation, which improves upon standard 
DMPs by ensuring global asymptotic stability. Furthermore, work by Pastor et al. 
[Pastor2009] extended DMPs to allow for real-time obstacle avoidance by modifying the 
attractor landscape. 
 In addition to these extensions, Riemannian geometry has recently emerged as a 
powerful tool to enhance DMPs. The introduction of Riemannian Motion Policies (RMPs) 
by Ratliff et al. [Ratliff2018] has paved the way for learning and controlling movements 
on manifolds. RMPs provide a way to encode complex, task-relevant motions using 
Riemannian metrics, which respect the intrinsic geometry of the underlying manifold. 
This framework allows for more natural and efficient learning of motions, especially 
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when dealing with articulated robots or tasks defined on curved spaces. 
 Integrating DMPs with Riemannian manifolds has proven to be a promising approach 
for enhancing robot learning and control. Riemannian manifolds provide a flexible 
mathematical structure that can represent the curved and nonlinear nature of many 
robotic tasks. For instance, learning on the space of rotations (SO(3)) or the space of 
positive definite matrices (SPD(n)) is naturally handled using Riemannian geometry. 
Jacquier et al. [Jacquier2020] demonstrated the effectiveness of DMPs on Riemannian 
manifolds for imitation learning tasks, where the task space is non-Euclidean. 
 Research by Allenspach et al. [Allenspach2024] has focused on leveraging Riemannian 
metrics to learn and adapt motions on a robot's configuration space, significantly 
enhancing its ability to handle real-world complexities such as joint limits and dynamic 
obstacles. This integration is particularly advantageous in tasks requiring precise 
manipulation and force control, such as defect detection and correction in collaborative 
human-robot environments. 
The use of Riemannian DMPs in human-robot collaboration has become increasingly 
relevant in manufacturing and other industrial applications. In these environments, 
robots are required not only to learn from human demonstrations but also to adapt to 
new defects and anomalies on the fly. The application of DMPs in these settings has 
shown promise considering the ability to generalize from a few examples to unseen 
situations is greatly enhanced by the geometric properties of the Riemannian space. 
 Additionally, advances in reinforcement learning (RL) and imitation learning (IL) have 
been combined with DMPs on Riemannian manifolds to further improve robot 
adaptability and robustness. Methods such as Geometric Reinforcement Learning (GRL) 
by Zhang et al. [Zhang2015] exploit Riemannian structures to reduce sample complexity 
and improve convergence rates in policy learning, particularly in environments that are 
dynamic and highly uncertain. 

5.3 OBJECTIVES AND REQUIREMENTS 

The primary objective of this deliverable is to develop a robotic system capable of 
learning and adapting defect working skills from human demonstrations in real time. 
This involves creating motion planning and control algorithms based on Riemannian 
DMPs. The system aims to achieve the following objectives: 

1. High Adaptability: The robot must generalize learned skills to new parts not 
encountered during training. The system will employ Riemannian metrics to 
adapt DMPs dynamically to novel situations. 

2. Safety and Efficiency: Collaborative tasks require a high level of safety and 
efficiency. The robot must predict and avoid collisions with human operators 
while performing defect correction tasks. Riemannian DMPs provide a more 
accurate and flexible representation of the task space, which is crucial for 
maintaining safety in dynamic environments. 

3. Real-Time Operation: The system must operate in real time to ensure seamless 
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integration into a human-robot collaborative setting. This requires optimizing the 
motion planning algorithms to handle sensor data and adapt motions within a 
few milliseconds. 

4. Robust Learning from Limited Data: Since acquiring extensive real-world data is 
often impractical due to safety and privacy concerns, the system must efficiently 
learn from a small number of demonstrations. To this end, DMPs are well fit given 
that they require just few demonstrations to be able to learn and generalize 
motion data captured from humans. 

The system's KPIs include achieving a convergence time of ≤15 hours for learning new 
skills, ensuring the system can learn and adapt efficiently, and ≤10 hours of 
observations to converge to a satisfactory policy. Moreover, similarity measures 
between the learnt and the human policies make the adoption of DMPs a good choice 
for this type of task. 
Hereafter we report the KPIs (Table 5.1), as described in the Deliverable D2.1 - “Use Case 
Definition”, related to the Learning defect working skills from humans. 
 

Scientific and 
technological objective KPI ID KPI definition After MAGICIAN 

(O1) A robotic perception 
module integrating visual and 
tactile sensors. The module will 
be embedded in a robotic 
sensor module (the SR, 
hereafter) and will be used for 
defects analysis and 
classification. The SR will 
replicate the skills of human 
workers through a learning 
scheme. 

O1-KPI-
LRN-SR1 

Misclassification rate with 
respect to human. 

≤10% 

O1-KPI-
LRN-SR2 

Time to convergence. Observation time ≤ 15h to 
achieve KPI-LRN-SR1 

(O2) A robotic cleaning module 
attached to a robotic platform 
(the CR hereafter) equipped 
with a specialized end-effector 
to rework defects. The system 
will learn the necessary skills by 
observing humans. 

O2-KPI-
LRN-CR1 

Reduction of measurement 
uncertainty. 

RMSE ≤ 5% 

O2-KPI-
LRN-CR2 

Time synchronisation error 
among data coming from 
different sources. 

≤ 0.1 ms 

O2-KPI-
LRN-CR3 

Number of samples to 
converge to a satisfactory 
policy. 

≤ 10h of observations 

O2-KPI-
LRN-CR4 

Similarity measures between 
the learnt and the human 
policies. 

position error ≤ 1mm; 
orientation error ≤1°; force 
error ≤ 5N; moment error 

≤ 2Nm 

Table 5.1. KPIs related to the Learning defect working skills from humans. 
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5.4 DATA ACQUISITION AND ANNOTATION 

Data acquisition for learning defect working skills from humans involves capturing visual 
data streams from human demonstrations. This process is essential for training the robot 
to recognize and react to different types of car body on factory floors. 
Data collection involves real-world data generation. Real-world data is collected using 
high-resolution cameras recording human actions. For this deliverable of MAGICIAN, the 
data adopted is derived from the Human Motion Detection module, considering the 
necessary information for this module is the trajectory of the human hand with respect 
to the car body part of interest. No other sensors are employed to learn human motion 
data, as the use of a cartesian impedance controller will optimally control the 
interactions between the robot and the chassis when reproducing human-learned 
trajectories. 
 On the other hand, the annotation process is a critical step in preparing the dataset for 
supervised learning. We use a combination of automated and manual techniques to 
ensure high-quality annotations. State-of-the-art computer vision models like 
MocapNET are employed to automate the annotation of human poses and actions, while 
manual oversight is provided to correct any inaccuracies, particularly in challenging 
scenarios with occlusions or complex poses. Another fundamental part of manual 
annotation is necessary to define the car part for which the motion is learned. In this way, 
we can define a motion primitive for each car part, and then to generalize even in cases 
where the car model is changed. This dataset is essential for training machine learning 
models that can exploit the geometric properties of DMPs together with Riemannian 
manifolds for efficient learning and adaptation. 

5.5 METHODOLOGIES EMPLOYED 

The methodologies employed in this research involve a novel integration of Dynamic 
Motion Primitives (DMPs) with Riemannian manifold learning to achieve adaptive and 
generalizable robot manipulation skills for defect detection and correction tasks in 
collaborative human-robot environments. The core framework leverages human 
demonstrations to learn variable impedance manipulation skills, which are then 
generalized to new scenarios by exploiting the geometric properties of Riemannian 
spaces. The approach can be broadly divided into four key components: Trajectory 
Collection and Preprocessing, Riemannian-based Skill Learning, Skill Generalization 
using Extended DMPs, and Real-Time Robotic Control. While the extraction of the skill is 
performed on MATLAB, robotic control has been developed in C++ and communication 
is obtained through the use of ROS topics. 
Trajectory Collection and Preprocessing 
The first step involves collecting multiple trajectories of human demonstrations for 
various defect correction tasks, such as defect detection or surface finishing. As can be 
seen in Figure 5.2, these trajectories, consisting of both positional and orientation data 
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of the human hand, are captured using external cameras. For each demonstration, the 
position p(t)∈R3 and orientation q(t)∈S3 (unit quaternion) of the human hand are 
recorded. Each trajectory is represented as: 

𝑂!(𝑡) = {𝑝!(𝑡), 𝑞!(𝑡)},  𝑖 = 1,2, … ,𝑁 
where N is the number of demonstrations. The recorded trajectories are time-aligned to 
a common time frame [0, 𝑇] to ensure consistency. This alignment is achieved using a 
linear time warping function: 

𝑂!(𝑡) = 𝑂! 9
𝑇(𝑡 − 𝑡")
(𝑡# − 𝑡")

; ,  𝑖 = 1,2, … ,𝑁, 

where 𝑡", 𝑡# are the start and end times of each demonstration. 

 
Figure 5.2. Example of a recorded trajectory performed by a human during the sensing phase. The orientation in this 
case is expressed in form of quaternion. 

After having aligned all the trajectories for each car part, we transformed the obtained 
pose from the camera reference frame to a specific initial frame recognized on the car 
part. In this way, we are able to later generalize the obtained trajectories in case the 
component is changed with one of different dimensions, by recognizing an initial and a 
final pose on the car part.  
Both positional and transformed orientation data are then encoded using a Gaussian 
Mixture Model-Gaussian Mixture Regression (GMM-GMR) framework, which captures 
the variability in the demonstrations and allows for the estimation of the mean 
trajectory. The encoded mean trajectory is obtained through regression of the 
demonstrated data, providing a robust representation for skill reproduction. 
Riemannian-Based Skill Learning 
To handle the nonlinearities and complexities of the robot's configuration space, the 



 
 

 
 

80 
 

D3.1 FIRST DELIVERY OF PERCEPTION 
SYSTEMS  

demonstration data is encoded on a Riemannian manifold. The orientation data, 
represented as quaternions, is converted to an axis-angle quaternion, such that the 
angle is learned through a classical Cartesian DMP along with the cartesian position 
while the axis is mapped to a tangent space using the Quaternion Logarithmic Mapping 
Function. 
This transformation allows the axis to be treated as a decoupled 3D vector in the tangent 
space, simplifying the process of trajectory encoding and generalization. Once having 
extracted the initial and final target orientations, we proceed to evaluate the geodesic 
between two consecutive orientations, i.e. the distance on the Riemann manifold 
expressed as the arccosine of the angle between them. In this way, we compressed a 3-
dimensional data (axis) as a unique value, the geodesic (Figure 5.3). 

 
Figure 5.3. Geodesic between two consecutive orientations. The angle of difference is expressed in radians. This 
representation is especially beneficial for generalization and to compress data. 

Apart from the difference in the evaluation of the distance between two consecutive 
vectors, the rest of the Riemannian DMP is exactly the same as a classical one, where, 
using a combination of a stable, attractor-based system and a flexible, non-linear 
function, the attractor system drives the motion towards a goal, while the non-linear 
function adds adaptability, allowing the robot to adjust the motion in response to 
changes in the environment. Once a new trajectory is integrated through the learned 
DMP, we apply the Rodriguez formula to generalize on different initial and final 
orientations. 
Real-Time Robotic Control 
The calculated pose trajectories are then used to compute control commands based on 
a Cartesian Impedance Control framework. Operating in Cartesian space allows for the 
modulation of the manipulator's compliance in specific directions, enabling more 
convenient and flexible handling of physical interactions. For example, in a grinding or 
polishing task where the manipulator needs to move along a rigid surface, the stiffness 
can be reduced in the direction normal to the surface. This ensures consistent contact 
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with the object while maintaining high precision along the desired path in the other 
directions. 
The proposed approach has been validated in real-world experiments with a 6-DoF robot 
manipulator, showing that the integration of DMPs with Riemannian manifolds leads to 
more adaptable and robust skill acquisition and reproduction, particularly in 
environments that involve possible changes in the initial and final poses. 

5.6 PRELIMINARY RESULTS AND FINDINGS  

The preliminary results from the integration of Dynamic Motion Primitives (DMPs) with 
Riemannian manifolds have demonstrated promising outcomes in terms of learning 
defect working skills from human demonstrations. Initial experiments were conducted 
to evaluate the system's capability to learn and adapt to various defect detection and 
correction tasks, using visual data. 
 Using a dataset of human demonstrations collected through high-resolution cameras, 
the system was trained to replicate human-like defect detection and correction 
behaviours. The integration of DMPs with Riemannian metrics allowed the robot to 
generalize well across different types of defects and surface geometries. The Riemannian 
DMP framework achieved a mean of 3% of error in reproducing the trajectory regarding 
the position (Figure 5.4) and a mean of 8% regarding the orientation (Figure 5.5). This 
suggests that the Riemannian representation effectively captures the underlying 
geometric and physical properties of the task space, resulting in robust learning 
outcomes. 
The preliminary findings also indicated that the Riemannian DMPs were able to 
interpolate and extrapolate motions more smoothly than their Euclidean counterparts. 
For example, the system successfully learned to adapt to new locations on different parts 
of car body panels (Figure 5.6), achieving a task success rate of 96% when evaluated on 
a benchmark set of test cases, which included defects of various sizes and types. 
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Figure 5.4. Demo human trajectory (red) and trajectory reproduced by the Cartesian DMP (Blue) of the position (x,y,z). As 
it can be seen, the error is very low, and it can still be improved with finer tuning of the parameters belonging to the 
DMPs. 

 
Figure 5.5. Demo human trajectory (red) and trajectory reproduced by the Riemannian DMP (Blue) of the orientation 
(expressed as axis). As it can be seen, the error is higher than the position but the performances when generalizing are 
superior to what can be obtained with the classical DMP. 

The developed system still needs to be optimized to reach near real-time performance, 
with a motion planning and adaptation latency of approximately 1 to 2 s. This still does 
not meet the real-time requirements for collaborative human-robot environments 
where rapid adjustments are necessary for safety and efficiency.  
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 Preliminary trials in simulated and real-world environments showed that the robot's 
ability to learn from human demonstrations while maintaining safe interaction distances 
needs to be enhanced. The Riemannian DMPs enabled smoother motion transitions and 
more predictable behaviour, reducing the likelihood of unintended collisions. However, 
in tasks where the robot had to operate in close proximity to human operators, such as 
collaborative defect detection and correction, safety metrics, such as the average 
stopping distance from human collaborators, need to be implemented. Nevertheless, 
the application of this learning technique together with a cartesian impedance 
controller provides a first degree of compliance with human collaborators. 

 
Figure 5.6. Complete trajectory of the demo and the DMP trajectories. As can be noticed, the motion of the human is 
preserved when replicated, and the final error is very low. 

5.7 CHALLENGES AND LIMITATIONS 

Despite the promising preliminary results, several challenges and limitations were 
identified in the integration of Dynamic Motion Primitives (DMPs) using Riemannian 
manifolds for learning defect working skills from humans. These challenges need to be 
addressed to fully realize the potential of this approach in real-world applications. 
 One of the primary challenges encountered is the computational complexity associated 
with the Riemannian manifold calculations, particularly in high-dimensional task spaces. 
While the use of GPUs has mitigated some of these issues, the system's scalability 
remains a concern. For instance, when scaling up to more complex tasks that involve 
multiple types of defects and larger workspaces, the computation time for Riemannian 
distance calculations can become a bottleneck. This can limit the system’s ability to 
maintain real-time performance, especially in highly dynamic environments where 
quick adaptations are crucial. 
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 While the Riemannian DMP framework has shown improved adaptability to new 
environments, its robustness is still limited by the inherent variability and uncertainty in 
real-world settings. For instance, changes in environmental conditions such as lighting, 
surface reflectance, or temperature can adversely affect the robot's performance. 
Developing more robust perception algorithms that can dynamically adjust to these 
variations is essential for the system’s deployment in real-world manufacturing 
scenarios. 
The integration of Riemannian DMPs also introduces complexity in terms of system 
usability for non-expert operators. While the approach offers significant performance 
benefits, the learning and adaptation processes are not yet fully transparent to human 
operators. This lack of interpretability can hinder user trust and acceptance, particularly 
in collaborative settings where humans and robots must work together seamlessly. 
Simplifying the user interface and providing intuitive feedback mechanisms are crucial 
steps toward improving usability. 
Addressing these challenges will involve several future research directions, including: 

• Optimization of Riemannian Calculations: Developing more efficient 
algorithms and approximation methods to reduce the computational 
overhead associated with Riemannian metrics. 

• Advanced Data Augmentation: Leveraging generative models and simulation 
environments to create more diverse and representative training datasets. 

• User-Centric Design: Focusing on human factors engineering to create more 
intuitive and user-friendly interfaces that facilitate better human-robot 
collaboration. 

By tackling these challenges, the system can be made more robust, efficient, and user-
friendly, ultimately enhancing its applicability in industrial settings where defect 
detection and correction are crucial. 
 

6 CONCLUSIONS 
This deliverable reported the activities of the first year in the MAGICIAN WP3, which aims 
to develop the required perception systems that will provide the rest of the system with 
the necessary information to carry out the required tasks. Specifically, conducted 
research, developed prototypes, experiments and preliminary results are presented in 
detail in all the relevant perception areas, include defect detection using visual and 
tactile input, human presence detection and pose estimation, and further processing of 
this lower-level input for tasks such as learning defect reworking. The presented work 
has already yielded encouraging preliminary results and useful insights and lays the 
groundwork for further development of the perception systems and their integration in 
the MAGICIAN platform. 
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6.1 FURTHER DEVELOPMENT OF THE VISUAL PERCEPTION 
MODULE 

The proof-of-concept visual perception module we developed serves as the baseline for 
its further development. We can summarize the next steps for each of the components 
with the following list. 
Defect Sensing module: 

- Redesign with multiple programmable light sources for surfaces that currently 
occlude the single light source currently used. 

- Possibly switch to 13 mm lens instead of 12 mm for better accuracy if we can 
reduce scanning area. 

- Add passive range finding provisions to the sensor to be used by the robot in 
combination with the fixed focus lens. 

- Have a rigorous CAD/electronics design to ensure reproducibility of the sensor 
head in later work packages / between partners / during actual deployment / if 
the working sensor becomes damaged by a collision in the actual robot. 

- After finalizing the sensor design and construction, record finalized data using 
data from all partners and train network with most data possible. 

- Optimize computational workload considering integration to the rest of the 
platform 

- Integrate packages with ROS / rest of the robot 
 

Motion Detection module: 
- Decide on where the human pose estimation camera will be placed, its field of 

view etc. 
- Improve human pose estimation by incorporate data from our use case. 
- Integrate packages with ROS / rest of the robot 

6.2 FURTHER DEVELOPMENT OF THE TACTILE PERCEPTION 
MODULE  

The next phase of development for the Tactile Perception Module will focus on refining 
data acquisition protocols and maximizing the amount of collected data. This will involve 
improving the efficiency of the acquisition process and expanding user participation in 
data collection to better generalize defect exploration methods. Specifically, IIT will 
utilize a Vicon system to track the Tactile Perception Module, incorporating tracking data 
into the collected dataset. This will enable the continuous data stream to be managed 
and facilitate automatic labelling of multiple defects within a single scan during post-
processing. Indeed, in the initial development stage, data was labelled asking the 
participant to pass over a specific defect. However, future acquisitions will include 
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precise tracking of the tool's position and orientation, along with the exact defect 
location on the surface. Moreover, the new protocol will ensure that users are unaware 
of defect locations by removing any indicator on the car bodies (e.g. circles made with 
markers), eliminating potential biases in their scanning movements. This will result in 
more reliable force and acceleration measurements. These improvements will enhance 
the accuracy of the scanning process and defect classification by ensuring precise 
coverage of the tool's movement. 

6.3 INTEGRATED SENSING 

As described above, we are developing two families of solutions for defect detection: 
vision-based techniques and tactile techniques. We are planning to implement a 
synergistic application of the two techniques. This will be possible by deploying the two 
sensors on the same end-effector. More specifically, we can classify in the following 
classes:  
• Class 1: Defects that for their type and/or position can be efficiently detected only by 

vision sensors  
• Class 2: Defects that for their type and/or position can be efficiently detected only by 

tactile sensors  
• Class 3: Defects that can be analysed by both techniques.  

For defects belonging to Class 3, it is possible to adopt some type of sensor fusion to 
reduce the probability of false positives or false negatives.   

6.3.1 MULTI-MODAL FUSION 

Given the nature of the application, we proceed by first using the vision sensor (which 
does not require to come into contact with the car-body and requires a smaller time), 
and then move to the tactile sensor only if the confidence in the outcome of the 
detection algorithm is below a certain threshold.  
Consider a candidate area and let:  

• D be the event: “defect in the area”;  
• V be the event: “vision sensor notifies the presence of a defect”  
• T be the event: “tactile sensor notifies the presence of a defect”  
• The overline notation denote the complement of an event (e.g., 𝐷 means absence 

of defect in an area).  
Based on the previous measurement, we have a statistical evaluation of the presence of 
the defects. In other words, when the car-body arrives, for the considered location, we 
know P(D). Clearly the convenience of a measurement is there if:  

𝑃(𝐷|TV) ≤ 𝑃(𝐷|V) ≤ 𝑃(𝐷) ≤ 𝑃(𝐷|𝑉) ≤ 𝑃(𝐷|𝑉𝑇) 
In other words, if the visual sensor notifies the presence of a defect, it’s the resulting 
conditional probability has to be greater that then prior probability, and conversely if the 
visual sensor signals the absence of a defect, the conditional probability has to be 
smaller. As we discussed in D4.1, it is possible to see that the convenience of 
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a measurement requires: 
𝑃(𝑉|𝐷) ≥ 𝑃D𝑉E𝐷F, 

and the convenience of a tactile confirmation requires that: 
𝑃(𝑇|𝐷) ≥ 𝑃D𝑇E𝐷F . 

The two equations above reflect the intuitive notion that in order for a sensor to convey 
valuable information, its accuracy has to be greater than the probability of a false 
positive. 
The convenience of the combined use requires that P(D|VT) > P(D|V). The exact threshold 
on P(D|V) to decide the use of the tactile sensor is a tuning variable, as explained in D4.1. 
Input from the sensing components is  𝑃(𝑉|𝐷), 𝑃D𝑉E𝐷F, 𝑃(𝑇|𝐷)	and	𝑃D𝑇E𝐷F, which will have 
to be provided based on a precise characterisation of the solutions proposed above. 
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